Monday, 19 April

ALPS-1~6

Invited

[ALPS-Opening] 9:00-9:15 Opening Remarks

Chair: Hitoki Yoneda
Institute for Laser Science, University
of Electro-Communications

[ALPS-1] 9:15-10:45 Novel optical materials/structure and applications

Chair: Shunsuke Kurosawa Tohoku University

ALPS-1-01 9:15

Novel single crystal halide scintillators based on Cs-Cu-I compositions

Martin Nikl¹, Shuangliang Cheng^{2,3}, Alena Beitlerova¹, Romana Kucerkova¹, Eva Mihokova¹, Guohao Ren², Yuntao Wu² ¹Institute of Physics, Academy of Sciences of The Czech Republic, ²Shanghai Institute of Ceramics, Chinese Academy of sciences, ³University of Shanghai for Science and Technology

Novel single crystal halide scintillators based on undoped CsCu₂l₃and Cs₃Cu₂l₅ perovskite single crystal are presented. They show a unique combination of non-hygroscopic, self-absorption free, medium fast scintillation response, high light yield and ultralow afterglow characteristics which make them competetive for a number of applications.

ALPS-1-02 9:45

Invited

(Tentative) Recent progress in nonlinear optical borate crystal //

Tianjin University of Technology

This report will introduce the current research progress on nonlinear optical crystals in the DUV, UV, mid-far IR and terahertz ranges. In particular, the progresses on growth of large LiB $_3$ O $_5$ and KTiOPO $_4$ will be reported.

ALPS-1-03 10:15

Electron density imaging of ultrafast plasma dynamics with two-color STAMP

Keitaro Shimada¹, Yuki Inada², Ayumu Ishijima¹, Takao Saiki¹, Ichiro Sakuma¹, Keiichi Nakagawa¹

¹The University of Tokyo, ²Saitama University We propose novel usage of two-color

We propose novel usage of two-color sequentially timed all-optical mapping photography for electron density imaging in under-dense plasma. The electron density distribution in air breakdown plasma ranged from 10²⁴ to 10²⁵ m⁻³.

ALPS-1-04 10:30

Rod-Type Ce/Cr/Nd:YAG Ceramic Lasers Using White Light Pump Source

Taku Saiki¹, Tatsuya Iwatani¹, Hiroaki Furuse², Shinji Motokoshi³, Yasushi Fujimoto⁴, Masahiro Nakatsuka³ ¹Kansai University, ²Kitami Institute of Technology, ³Institute for Laser Technology, ⁴Chiba Institute of Technology

Rod-type Ce³⁺/Cr³⁺/Nd:YAG ceramic pumped by white light such as solar light or flash lamp light was developed. Laser oscillations at free running mode were observed. The maximum output laser energy of 73 mJ was obtained.

[ALPS-2] 11:15-12:00 Mid-Infrared fiber sources

Chair: Shigeki Tokita
Osaka University

ALPS-2-01 11:15

invited

Towards power scaling of mid-infrared fiber lasers

Martin Bernier, Vincent Vincent Fortin, Yigit Ozan Aydin, Sebastien Magnan-Saucier, Real Vallee

COPL, Laval University, Canada

Output power from mid-infrared fiber lasers are now approaching the 50W-level, thanks to the rapid development of high performance fluoride fiber-based components. Recent results and strategies for further power scaling will be discussed.

ALPS-2-02 11:45

Multi-octave coherent supercontinuum generation under anomalous dispersion regime in ZBLAN fiber based on a master oscillator fiber amplifier

Seyed Ali Rezvani¹, Kazuhiko Ogawa², Takao Fuji¹

*Toyota Technological Institute, *FiberLabs Inc.

A fully stable supercontinuum spanning from 0.35-4.5 µm is generated under anomalous dispersion in polarization-maintaining ZBLAN fiber using pulses at the vicinity of 2 µm

from a master oscillator fiber amplifier

ALPS-7~11

[ALPS-7] 9:15-10:45 Quantum optics and their applications1

Chair: Masahiro Takeoka NICT

ALPS-7-01 9:15

Invited

Entangled Sensor Networks Empowered by Machine Learning

Zheshen Zhang^{2,1}, Yi Xia¹, Wei Li² Quntao Zhuang^{3,1}

¹J. C. Wyant College of Optical Sciences, University of Arizona, ²Department of Materials Science and Engineering, University of Arizona, ³Department of Electrical and Computer Engineering, University of Arizona

We report the experimental demonstration of supervised learning assisted by an entangled sensor network (SLAEN). We show an entanglement-enabled reduction in the error probability for classification of multidimensional radio-frequency signals.

ALPS-7-02 9:45

High-visibility two-photon interference with ultra-fast pumping laser

Yoshiaki Tsujimoto, Kentaro Wakui, Mikio Fujiwara, Masahide Sasaki, Masahiro Takeoka National Institute of Information and

National Institute of Information and Communications Technology

We report on the observation of highvisibility two-photon interference between heralded single photons generated by spontaneous parametric down-conversion with 3.2 GHz-repetition-rate mode-locked pump pulses.

ALPS-7-03 10:00

Evaluating an integrated silicon photonic nonlinear interferometer

Takafumi Ono¹², Gary F. Sinclair³, Damien Bonneau³, Mark G. Thompson³, Jonathan F. C. Matthews³, John G. Rarity³ ¹Kagawa University, ²PRESTO, ³University of Bristol

We experimentally observed constructive and destructive quantum interference in the production rate of the photon pairs generated by spontaneous four wave mixing of silicon waveguide.

ALPS-7-04 10:15

Arbitrary Mixing of Spectral Multimode Quantum States with Dispersion-Engineered Nonlinear Waveguide Crystal

Yuta Yamagishi¹, Aruto Hosaka¹, Kazufumi Tanji¹, Sunao Kurimura², Fumihiko Kannari¹

¹Keio University, ²National Institute for Materials Science

As a method of quantum pulse gating in a quantum simulator, an arbitrary mixing method of multimode quantum states prepared in the frequency domain is experimentally demonstrated.

ALPS-7-05 10:30

Joint spectral intensity of two-photon emission from biexciton

Hiroya Seki¹, Dongeun Son¹, Yuta Uchibori², Jun Ishihara², Kensuke Miyajima², Ryosuke Shimizu¹

¹The University of Electro-Communications, ²Tokyo University of Science

Conventional spectral measurements are insufficient for characterizing a photon photon-pair spectrum. We present a two-photon spectral measurement in 2D space to investigate nonlinear light-matter interactions and demonstrate it with photon-pair from biexciton.

[ALPS-8] 11:15-12:15 Quantum optics and their applications2

Chair: Ono Takafumi Kagawa University

ALPS-8-01 11:15

Quantum sensing using photons

Ryo Okamoto^{1,2}

¹Department of Electronic Science and Engineering, Kyoto University, ²PRESTO, Japan Science and Technology Agency

Invited

Quantum sensing using photons is attracting attention since it outperforms sensing with classical light. Here we introduce recent progress of our theoretical and experimental studies on quantum sensing using photons.

ALPS-8-02 11:45

MIR single-shot ultrafast imaging with a combination of SF-STAMP and quantum imaging based on induced coherence with induced emission

Kazuki Takahashi, Riku Watase, Aruto Hosaka, Fumihiko Kannari *Keio University*

We show that quantum imaging based on induced coherence with induced emission is possible, and propose a new mid-infrared single-shot ultrafast imaging scheme with a combination of SF-STAMP and quantum imaging.

ALPS-8-03 12:00

Colloidal quantum dots as highperformance single-photon sources: Improvements in purity and system efficiency

Toshiyuki Inara¹, Shigehito Miki¹², Fumihiro China¹, Toshiki Yamada¹, Hirotaka Terai¹ ¹National Institute of Information and Communications Technology,²Kobe University

We developed an advanced technique to improve the performance of single-photon source comprising of colloidal quantum dots. High single-photon purity showing $g^{(2)}$ (0)=0.001 and high system efficiency of 1.4 % were observed.

Monday, 19 April

ALPS-1~6

[ALPS-3] 13:00-14:15 Mode-locked oscillators

Chair: Masaki Tokurakawa University Electro-Communications

ALPS-3-01 13:00

Compact Kerr-lens mode-locked lasers

Shota Kimura, Shuntaro Tani, Yohei Kobayashi The University of Tokyo

We developed a compact Kerr-lens mode-locked laser with a pulse repetition rate above 20 GHz. We also developed a Q-switched Kerr-lens mode-locked lasers with a repetition rate of 36 GHz.

ALPS-3-02 13:30

Kerr-lens mode-locked Yb:CaF2 oscillator directly pumped by a laser diode

Satoshi Nakamura, Yuya Suzuki, Akira Shirakawa

The University of Electro-Communications We demonstrated a Kerr-lens mode-locked Yb:CaF₂ oscillator with diode excitation.The shortest pulse duration of 85 fs with 220 mW average power was achieved. 133 fs, 510 mW pulses were also obtained.

ALPS-3-03 13:45

Development of Supercontinuum Laser Source at 2 µm Wavelength Using Tm-Ho co-doped Ultrashort Pulse Fiber Laser and OCT Imaging

Junya Yamamoto¹, Masahito Yamanaka¹, Ying Zhou2, Takeshi Saitoh2, Youichi Sakakibara², Norihiko Nishizawa¹

¹The University of Nagoya, ²National Institute of Advanced Industrial Science and Technology

Highly efficient Tm-Ho co-doped ultrashort pulse fiber laser operating at 1.9 µm was developed using single wall carbon nanotube. Wideband supercontinuum at 2.0 µm was generated and high-resolution OCT imaging of human tooth was demonstrated.

ALPS-3-04 14:00

Transient dynamics of an ANDi mode-locked Yb-fiber laser oscillator monitored by time-stretch dispersive Fourier transform

Tomohiro Ishikawa¹, Muku Yoshizawa², Keisuke Isobe^{1,3}, Katsumi Midorikawa¹, Fumihiko Kannari² ¹RIKEN, ²Keio University, ³Kyoto University

We investigated a gain-dependent transitional behaviour in build-up and shut-down processes of an ANDi modelocked Yb fiber oscillator using a timestretch dispersive Fourier transform scheme.

[ALPS-4] 14:45-15:45 High peak power fiber lasers

Chair: Shunichi Matsushita Furukawa Electric Co., Ltd.

Invited ALPS-4-01 14:45

Invited

Coherent beam combining of largescale fiber laser array: enabling technique and recent progress

Pu Zhou, Hongxiang Chang, Qi Chang, Tianyue Hou, Wenchang Lai, Yuqiu Zhang, Bo Ren, Tao Wang, Can Li, Pengfei Ma Rongtao Su, Jian Wu, Yanxing Ma National University of Defense Technology,

In this presentation, we will introduce the enabling technique and recent progress for coherent beam combining of large-scale fiber lasers in our research group. Representative results, such as more than 500 W single frequency fiber laser, phase control of more than 100 laser channels, and experimental results in the case of atmosphere, will be provided and discussed.

ALPS-4-02 15:15

Generation of high energy ultrashort pulse using chirped pulse amplification and divided pulse amplification

Kota Sugimoto, Henrik Tünnermann, Akira Shirakawa

The University of Electro-Communications

We demonstrated fiber pulse amplification implementing divided pulse amplification together with chirped pulse amplification. And the combining efficiency is discussed.

ALPS-4-03 15:30

Laser Material Processing System Based on High-Peak-Power, Pulse-Width-Tunable Sub-Nanosecond Fiber Laser

Yutaka Nomura¹, Takeshi Hama¹ Masaki Iwama¹, Miyuta Naritomi¹ Ryo Kawahara¹, Jeffrey W. Nicholson², Shun-ichi Matsushita1 ¹Furukawa Electric Co. Ltd., ²OFS Laboratories

A laser material processing system is developed based on a high-peak-power, pulse-width tunable sub-nanosecond erbium-doped fiber laser. Polyethylene terephthalate films with indium tin oxide coatings are processed with various laser parameters.

ALPS-7~11

[ALPS-9] 13:00-13:45 Optical frequency combs / Frequency stabilized lasers and applications1

Chair: Kaoru Minoshima University Electro-Communications

ALPS-9-01 13:00

Invited

Kerr solitons in photonic-crystal resonators

Scott Papp NIST. US

ALPS-9-02 13:30

Generation of multiple solitons with help from a saturable absorber

Ayata Nakashima¹, Shun Fujii^{1,2} Riku Imamura¹, Keigo Nagashima¹, Takasumi Tanabe

Keio University, 2RIKEN Center for Advanced

We simulated the generation of a dissipative Kerr soliton in a microresonator with and without a saturable absorber. We found that more solitons are formed thanks to the saturable absorption effect.

[ALPS-10] 14:15-15:45 Optical frequency combs / Frequency stabilized lasers and applications2

Chair: Sho Ookubo

National Institute of Advanced Industrial Science and Technology

ALPS-10-01 14:15

Invited

Route to attosecond resolved temporal soliton molecular dynamics

Youjian Song¹, Feng Zhou¹, Haochen Tian^{1,2}, Minalie Hu

Tianjin University, China, ²The University of Electro-Communications, Japan

An unprecedented 5 zs/\/Hz temporal resolution reveals 12-as rms relative timing jitter (integrated from 100 Hz to 1 MHz) between the two solitons that compose a soliton molecule in a Ti:sapphire laser.

ALPS-10-02 14:45

Digital-micromirro-device-based surface measurement using heterodyne interferometry with optical frequency comb

Guangyao Xu, Yue Wang, Shilin Xiong, Guanhao Wu

Tsinahua University

We demonstrate a digital-micromirrordevice-based surface measurement system using optical frequency comb. A three-step and a MEMS device surface are reconstructed quickly and accurately with the heterodyne interference method and synthetic wavelength method.

ALPS-10-03 15:00

Dual-comb based distance and angle measurement method

Siyu Zhou, Vunam Le, Guanhao Wu Tsinghua University

We propose a dynamic three degree-offreedom measurement technique based on dual-comb interferometry and a selfdesigned grating-corner-cube combined sensor. The method exhibits a ranging precision of 13.5 nm and an angular precision of 0.088 arcsec.

ALPS-10-04 15:15

One-shot three-dimensional phase imaging with optical frequency comb

Takashi Kato^{1,2}, Tamaki Morito¹, Kazuhiro Terada¹, Shintaro Kurata^{1,3}, Kaoru Minoshima

¹The University of Electro-Communications, ²JST, PRESTO, ³IHI Corporation

One-shot three-dimensional phase imaging is demonstrated using a 15-ps chirped pulse of an optical frequency comb. We captured nm-level phase change in the LiNbO_3 crystal by developed all-optical Hilbert transform method.

ALPS-10-05 15:30

Development of a broadband phasedifference evaluation system for optical frequency combs using spectral interference fringe detection

Tamaki Morito1, Takashi Kato1, Kazuhiro Terada¹, Shintaro Kurata^{1,3}, Kaoru Minoshima ¹The University of Electro-Communications, ²JST, PRESTO, ³IHI Corporation

We developed a technique to precisely detect a 90° carrier-envelope-phase difference in real-time between ultrashort pulse trains using spectral interference of combs. It provides high-precision in all-optical signal processing with comb, such as all-optical Hilbert transform.

Monday, 19 April

ALPS-1~6

[ALPS-5] 16:00-16:45 Mid-Infrared and visible lasers

Chair: Shigeki Tokita
Osaka University

ALPS-5-01 16:00

Invited

All-Solid-State Fe:ZnSe Mid-IR Femtosecond Lasers for Driving Extreme Nonlinear Optics

Fedor V. Potemkin
M.V. Lomonosov Moscow State University

We report on entering a new era of ultrafast lasers in intriguing mid-IR (greater than 4 um) spectral regions based on iron-doped chalcogenides. Together with the proposed recently Fe:ZnSe mid-IR oscillator with up to 400 mW average power and subpicosecond pulse duration a complete 20-GW 150-fs 3.5-mJ 4.4-um system opens the way to the novel class of table-top all-solid-state

laser-based sources. ALPS-5-02 16:30

Generation of Sub-10-ns Pulses from a Passively Q-switched Pr³⁺:LiYF₄ Laser

Hiroki Tanaka, Moritz Badtke, Lenn Ollenburg, Sascha Kalusniak, Christian Kränkel Leibniz-Institut fuer Kristallzuechtung

extremely multiband (from UV up to THz)

We demonstrate a Pr³+:LIYF4 laser at 640 nm passively Q-switched by a Co²+:MgAl $_2$ O4 spinel saturable absorber. A compact linear cavity as short as \approx 8 mm enables to achieve a pulse duration of 8.5 ± 1.0 ns.

[ALPS-6] 17:00-18:00 Novel optical devices, metamaterials, structure and applications 1

Chair: Takasumi Tanabe Keio University

ALPS-6-01 17:00

Invited

Photonic Crystal Optical Parametric Oscillator Alfredo de Rossi¹, Sylvain Combrié¹,

Alfredo de Rossi¹, Sylvain Combrié¹, Gabriel Marty^{2,1}, Fabrice Raineri^{3,2} ¹Thales Research & Technology, ²Centre de Nanosciences et de Nanotetchnologies, ³Université Paris Diderot, Sorbonne Paris Cité

We demonstrate that Optical Parametric Oscillators are possible using a small (20µm-long) semiconductor Photonic Crystal Cavity when its high Q modes are thermally tuned into a triply resonant configuration. The lowest pump power threshold is estimated to 50 - 70µW. This source behaves as an ideal degenerate Optical Parametric Oscillator addressing the needs in the field of quantum optical circuits.

ALPS-6-02 17:30

Enhancement of Angular Goos-Hänchen Shift by Surface Plasmon Resonance for Sensing Applications

Cherrie May Olaya^{1,2}, Norihiko Hayazawa^{1,2}, Nathaniel Hermosa¹, Takuo Tanaka^{1,2}

University of the Philippines, **PRIKEN

We demonstrate that tightly focusing the incident beam further enhances the angular Goos-Hänchen shift that was initially enhanced by the excitation of surface plasmon resonance on a gold film.

ALPS-6-03 17:45

Acousto-optic polarization controlling in KY(WO₄)₂ crystal for solid state laser Q-switching

Natalya F. Naumenko, Alexander I. Chizhikov, Konstantin B. Yushkov, Vladimir Ya. Molchanov National University of Science and Technology MISIS

We propose a new type of an acousto-optic Q-switch based on $KY(WO_4)_2$ crystal. The Q-switch with two independent control channels enables switching polarization of laser emission.

ALPS-7~11

[ALPS-11] 16:15-17:30 Optical frequency combs / Frequency stabilized lasers and applications3

Chair: Takashi Kato^{1,2}

¹The University of Electro-Communications, ²JST, PRESTO

ALPS-11-01 16:15

Quasi-dual-comb source opens new avenues for rapid spectroscopy

Risako Kameyama¹, Shigekazu Takizawa¹, Kotaro Hiramatsu¹²²³⁴, Keisuke Goda¹⁵⁵⁵¹¹ Department of Chemistry, The University of Tokyo, ²Research Center for Spectrochemistry, The University of Tokyo, ³PRESTO, Japan Science and Technology Agency, ⁴Kanagawa Institute of Industrial Science and Technology, ⁵Department of Bioengineering, University of California, Los Angeles, ⁵Institute of Technological Sciences, Wuhan University We demonstrate a "quasi"-dual-comb source, which enhances the aqcuisition rate of dual-comb spectroscopy by one order of magnitude by rapidly modulating the repetition rate of one of the frequency combs.

ALPS-11-02 16:30

Passively stabilized visible dualfrequency-spacing astro-comb

Ruoao Yang¹, Wei Han¹, Yuxuan Ma², Fei Meng¹, Chen Li¹, Aimin Wang¹, Fei Zhao³, Gang Zhao³, Zhigang Zhang¹ i State Key Laboratory of Advanced Optical Communication System and Networks, Department of Electronics, Peking University, Beijing 100871, China, ²Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany, ³National Astronomical Observatories CAS, Beijing 100012. China

We propose a dual-frequency-spacing astro-comb of 45 GHz and 30 GHz to cover 400-560 nm and 570-920 nm respectively, for the astro-spectrograph with the resolution around 50,000.

ALPS-11-03 16:45

Sensitivity improvement in dual-comb spectroscopy by tailoring the phase-slip in the interference signals

Ruichen ZHU, Takuto Adachi, Akifumi Asahara, Kaoru Minoshima The University of Electro-Communications

Sensitivity improvement technique is developed by applying coherent control tailored by frequency parameters involved in dual-comb spectroscopy. A signal-to-noise ratio enhancement in the spectroscopic signal was successfully demonstrated by using phase modulated interference fringe signals.

ALPS-11-04 17:00

Large-Scale Optical Synchronization System of the European XFEL

Invited

Jost Mueller, Sebastian Schulz, Matthias Felber, Thorsten Lamb, Falco Zummack, Anne-Laure Calendron, Mikheil Titberidze, Tomasz Kozak, Holger Schlarb DFSY

Tuesday, 20 April

ALPS-12~13

[ALPS-12] 9:00-10:45 Novel optical devices, metamaterials, structure and applications 2

Chair: Takasumi Tanabe Keio University

ALPS-12-01 9:00

Invited

Metamaterial Thermoelectric Conversion

Wakana Kubo Tokyo University of Agriculture and Technology Metamaterial enables a thermoelectric device to generate electricity even under

homogeneous temperature environment.

ALPS-12-02 9:30

Metamaterial Perfect Absorber as Nanoheater

Mahiro Horikawa, Wakana Kubo Tokyo University of Agriculture & Technology Metamaterial perfect absorber (MPA) shows near perfect light absorption at resonance wavelengths. In this study, we focused on heat generation of MPA based on such strong absorption. Both experimental and numerical approaches were conducted to evaluate the performance of MPA as a nanoheater

ALPS-12-03 9:45

Invited

Soliton microcomb and applications for long-distance ranging

Wenfu Zhang Xi'an Institute of Optics and Precision Mechanics

ALPS-12-04 10:15

Microcomb-based 300 GHz oscillator stabilized to a microwave reference

Tomohiro Tetsumoto¹, Fumiya Ayano², Julian Webber², Tadao Nagatsuma², Antoine Rolland¹

¹IMRA America Inc., ²Osaka University

We demonstrate 300 GHz wave generation based on a Kerr microresonator frequency comb stabilized to a microwave reference. The obtained phase noise is -88 dBc/Hz at 10 kHz offset frequency.

ALPS-12-05 10:30

Raman-comb-based wavelength source for optical communicatiom

Shuto Sugawara¹, Shuya Tanaka¹, Koshiro Wada¹, Shun Fujii¹², Hajime Kumazaki¹, Shun Tasaka¹, Shota Sota¹, Tamiki Ohtsuka¹, Satoki Kawanishi¹, Takasumi Tanabe¹, Soma Kogure¹

¹Department of Electronics and Electrical Engineering, Faculty of Science and Technology, Keio University, ²Quantum Optoelectronics Research Team, RIKEN Center for Advanced Photonics

We demonstrate optical data transmission with a fused silica-resonator-based Raman comb. Our result shows the potential of the Raman comb as a multi-channel wavelength source for wavelength division multiplexing.

[ALPS-13] 11:15-12:30 Short wavelength light sources and applications

Chair: Hitoki Yoneda
Institute for Laser Science, University
of Electro-Communications

ALPS-13-01 11:15

Invited

EUV/soft x-ray high-harmonic pulses structured in their spectral, spatial and polarization properties

Carlos Hernandez-Garcia *University of Salamanca*

The use of structured driving beams in high-order harmonic generation allows a unique control over the properties of the emitted EUV/soft x-ray harmonics, such as their temporal (attosecond), spectral (line spacing) and polarization properties.

ALPS-13-02 11:45

Research on fractal and angular momentum of electromagnetic solitons

Zhongpeng Li Shanghai Institute of Optics and Fine Mechanics, CAS

We report the fractal features and the angular momentum of electromagnetic solitons induced via a radially polarized laser and circularly polarized laser, respectively, on the basis of three-dimensional particle-in-cell simulations.

ALPS-13-03 12:00

Invited

From UV to XUV: Approaches to imaging ultrafast dynamics

Heide Ibrahim

Institut National de la Recherche Scientifique

ALPS-14~15

[ALPS-14] 9:00-10:45 High average power lasers and applications1

Chair: Fumihiko Kannari Keio University

ALPS-14-01 9:00

Invited

Advances in quantum dot lasers and single photon sources

Yasuhiko Arakawa The University of Tokyo

We discuss recent advances in quantum dot photonic devices, including the commercialization of quantum dot lasers and the realization of a single photon source at room temperature. The impacts of quantum dot lasers on silicon photonics will be emphasized.

ALPS-14-02 9:30

Invited

Tb-lasers: Current state and future prospects

Christian Kraenkel, Elena Castellano-Hernández, Sascha Kalusniak, Hiroki Tanaka *Leibniz-Institut fur Kristallzuechtung, Germany*

Tb³+-doped materials enable tremendous laser performance in the green and yellow spectral range when pumped with modern, blue emitting sources. Here we report the latest progress in this field.

ALPS-14-03 10:00

UV Pumping of Tb-based Solid-State Lasers with Visible Emission

Sascha Kalusniak, Hiroki Tanaka, Elena Castellano-Hernández, Christian Kränkel Leibniz-Institut fuer Kristallzuechtung

We report on UV-pumped continuous wave laser operation of Tb³+:LiLuF₄. Compared to conventional cyan-blue pumping, much higher UV absorption cross sections of Tb³+ allow for a significant enhancement of the optical-to-optical efficiency.

ALPS-14-04 10:15

Self-Pulsation and Active Q-switching of Tb³*-doped YLF Laser Pumped by Blue-Diode Lasers

Yuta Shioya, Tatsuzo Uchida, Fumihiko Kannari *Keio University*

We study the output performance of actively or passively Q-switched Tb²⁺:YLF lasers pumped by blue-diode lasers. We also investigate self-pulsation in the Tb²⁺:YLF laser.

ALPS-14-05 10:30

Acousto-optically Q-switched Tb:LiYF4 green lasers

Hengjun Chen, Hiyori Uehara, Ryo Yasuhara National Institute for Fusion Science

We demonstrated the active-Q-switched Tb:LiYF4 green lasers with an acousto-optical modulator. At a designated repetition rate of 3 kHz, we achieved stable pulsed output with a typical pulse width of 190 ns and peak power of 580 W.

[ALPS-15] 11:15-12:15 High average power lasers and applications2

Chair: Fumihiko Kannari Keio University

ALPS-15-01 11:15

Invited

250-J Yb:YAG ceramics laser system for laser processing platform in TACMI consortium

Takashi Sekine¹, Takashi Kurita¹, Yuma Hatano¹, Yuki Muramatsu¹, Masateru Kurata¹, Takashi Morita¹, Takeshi Watari¹, Yuki Kabeya¹, Takuto Iguchi¹, Ryo Yoshimura¹, Yoshinori Tamaoki¹, Yasuki Takeuchi¹, Kazuki Kawai¹, Yujin Zheng¹, Yoshinori Kato¹, Norio Kurita¹, Toshiyuki Kawashima¹, Shigeki Tokita², Junji Kawanaka², Norimasa Ozaki², Youichiro Hironaka², Keisuke Shigemori², Ryosuke Kodama², Ryunosuke Kuroda³, Eisuke Miura³

"Hamamatsu Photonics K.K., ²Insutitute of LaserEngineering, Osaka University, ³National Institute of Advanced Industrial Science and Technology

A 250-J output diode-pumped Yb:YAG ceramics laser system has been developed to construct a database of high energy pulsed laser processing as a Hamamatsu satellite in TACMI consortium.

ALPS-15-02 11:45

Evaluation of Thermal Expansion coefficients of Laser Gain Media by First Principles Calculation

Yoichi Sato^{1,2}, Takunori Taira^{1,2} ¹RIKEN SPring-8 Center, RIKEN, ²Institute for Molecular Science

Thermal expansion coefficient (α) for laser ceramics were evaluated by the first principles calculation. α at 300 K for $Y_2AI_5O_{12},$ $Lu_3AI_5O_{12},$ $Y_2O_3,$ $Sc_2O_3,$ and Lu_2O_3 were estimated to 7.26, 7.52, 7.95, 7.18, and 6.95×10^{-6} K 1 , respectively.

ALPS-15-03 12:00

Proof-of-principle experiment for realizing laser stripping injection at J-PARC proton accelerator facility.

Aoi Fuchi¹, Yurina Michine¹, Hitoki Yoneda¹, Hiroyuki Harada², Pranab K Saha², Atsushi Sato³, Takanori Shibata⁴, Michikazu Kinsho²

¹Institute for Laser Science, University of Electro-Communications, ²JAEA/J-PARC, ³NAT, ⁴KEK

Laser stripping experiments are demonstrated in high current proton accelerator J-PARC facility. Charge exchange component of 3MeV test bench lines is detected with long pulse 1 mm laser pulse.

Tuesday, 20 April

[ALPS-Poster] 15:00-17:09 **ALPS Poster Short Talk Session**

ALPS-Poster-01 15:00

Fabrication of highly-doped Er:Y2O3 transparent ceramics by pulsed electric current sintering (PECS)

Daigo Ueno, Mayu Imai, Masaya Akagawa, Hiroaki Furuse

Kitami Institute of Technology

Transparent Er highly doped Y₂O₃ ceramics with fine microstructures were fabricated by pulsed electric current sintering (PECS) technique. In this study, their optical properties and microstructures were studied. ALPS-Poster-06 15:15

ALPS-Poster-02 15:03

Optical properties of hexagonal fluorapatite (FAP) polycrystalline

Daichi Kato¹, Takumi Kato¹, Naohiro Horiuchi², Koji Morita³, Byung-Nam Kim³, Hiroaki Furuse¹ ¹Kitami Institute of Technology, ²Tokyo Medical and Dental University, 3 National Institute for Materials Science

We fabricated non-cubic transparent fluorapatite ceramics by using pulsed electric current sintering (PECS) technique. Their optical properties and microstructures for various sintering temperature and optimal sintering condition will be discussed.

ALPS-Poster-03 15:06

Development of Watt-class High-Power Mid-Infrared Quantum Cascade Laser and application for laser processing

Akio Ito¹, Takahide Ochiai¹ Tatsuo Dougakiuchi¹, Nobutaka Suzuki¹, Atsushi Sugiyama¹, Naota Akikusa¹, Tadataka Edamura¹, Hidehiko Yashiro², Masayuki Kakehata², Nobuhiro Umebayashi²,

¹Hamamatsu Photonics K.K., ²National Institute of Advanced Industrial Science and Technology (AIST)

Watt-class high-power quantum cascade laser (QCL) was developed with polarized beam combine technique at I=8.6 mm. High efficient laser thermal processing such as PTFE can be performed thanks to large absorption in mid-infrared.

ALPS-Poster-04 15:09

Beam shaping of fiber-out midinfrared quantum cascade laser

Takahide Ochiai¹, Akio Ito¹, Tatsuo Dougakiuchi¹, Nobutaka Suzuki¹, Atsushi Sugiyama¹, Naota Akikusa¹, Tadataka Edamura¹, Hidehiko Yashiro², Masayuki Kakehata2, Nobuhiro Umebayashi2, Tadatake Sato²

¹Hamamatsu Photonics K.K., ²National Institute of Advanced Industrial Science and Technology

Fiber delivery mid-infrared quantum cascade laser module using a hollow fiber was developed. Top-hat intensity profile of output was realized by mode scrambling, and line-shaped irradiation was obtained with a ZnSe diffractive optical element (DOE).

ALPS-Poster-05 15:12

Optical characterization of sapphire/ YAG ceramic composite by Pulsed Electric Current Bonding (PECB)

Yuki Kagami¹, Hiroyuki Tanaka¹, Ryo Yasuhara², Hiroaki Furuse¹

¹Kitami Institute of Technology, ²National Institute for Fusion Science

The optical properties including laser performance of sapphire/Nd:YAG composite by pulsed electric current bonding was studied for various initial surface flatness conditions

1 J/100 Hz ns laser pulses generation from cryogenically-cooled Yb:YAG rod amplifier with ink-cladding

Shotaro Kitajima¹, Jumpei Ogino¹, Shigeki Tokita¹, Zhaoyang Li¹, Shinji Motokoshi2, Noboru morio1 Koji Tsubakimoto¹, Hidetsugu Yoshida¹, Kana Fujioka1, Ken-ichi Ueda3 Ryosuke Kodama1, Junji Kawanaka1 ¹Institute of Laser Engineering, Osaka University, ²Institute of Laser Technology, ³Institute for Laser Science, University of Flectro-Communications

A stable operation of 1.1 J/100 Hz 10 ns laser pulses were achieved from a single cryogenically cooled Yb:YAG rod amplifier with ink-cladding. The efficiency and gain coefficient were 44% and 383, respectively.

ALPS-Poster-07 15:18

Narrow Linewidth Cr:forsterite Master-Oscillator Power-Amplifier Laser System with > 45 mJ Output

Lyubomir Ivanov Stoychev^{1,2}, Marco Baruzzo^{2,3}, Jose J. Suarez-Vargas^{2,3}, Humberto Cabrera^{2,4}, Ivaylo Nikolov5, Alexander Demidovich5, Miltcho Danailov⁵, Andrea Vacchi² ¹Institute of Solid State Physics, BAS, ²INFN, Sezione di Trieste, 3Udine University, 4ICTP, ⁵Elettra-Sincotrone

A master-oscillator power-amplifier Cr:forsterite laser is presented with output energy of 45 mJ and narrow linewidth of 0.5 pm (95 MHz) and beam quality factor $M_x^2 = 1.94$, $M_y^2 = 1.70$.

ALPS-Poster-08 15:21

Dependence of CEP on the angle of incidence to the diffraction grating in chirped pulse amplification

Kaito Nishimiya, Takuma Noda, Kento Kubomura, Akira Suda Tokyo University of Science

For CEP stabilization in a diffraction grating-based CPA system, the dependence of CEP on the angle of incidence to the diffraction grating and the f-2f interferometer is investigated by experiment and calculation.

ALPS-Poster-09 15:24

Enhanced Self Focusing of q-Gaussian Laser Beams in Thermal Quantum Plasma with Axial Density Ramp: Effect of Ponderomotive Nonlinearity

Naveen Gupta Gupta¹, Sanjeev Kumar^{1,2} S. B. Bhardwaj3

¹Lovely Professional University, ²Government college for women Karnal, ³Pt. C. L. S College

Theoretical investigation on self focusing of q-Gaussian laser beam interacting with thermal quantum plasma has been investigated theoretically

ALPS-Poster-10 15:27

Few ns 0-switched Tm fiber laser

Takumi Yatsuda, Masaki Tokurakawa University of Electro-Communications, ILS We report an AOM Q-switched Tm fiber laser. Pulses as short as 3 ns with 80 μJ pulse energy was obtained. The mechanism of the pulse shortening would be attributed to Stimulated Brillouin back scattering.

ALPS-Poster-11 15:30

2 µm mode-locked lasers with normal dispersion Tm doped gain fibers

Yuya Uchizono¹, Takumi Sato¹, Yuhao Chen², Raghuraman Sidharthan², Seong Woo Yoo², Masaki Tokurakawa¹

¹University of Electro-Communications, ILS, ²Nanyang Technological University

Using W-type index profile normal dispersion Tm silica fiber, 4 nJ pulse energy with ~60 nm spectral bandwidth was obtained. From Mamyshev configuration oscillator with Tm:ZBLAN double clad fiber, CW output was obtained.

ALPS-Poster-12 15:33

Study on Improvement of Velocity Measurement Accuracy in a Distance and Velocity Simultaneous Measurement Sensor by Self-Coupling **Effect**

Daiki Sato, Masanari Yamada, Daisuke Mizushima, Norio Tsuda, Jun Yamada Aichi Institute of Technology

The semiconductor laser is modulated with triangular or arbitrary triangular waveforms, and the velocity is measured from the self-coupled signal obtained by the built-in photodiode. The measurement accuracy of the velocity is discussed.

ALPS-Poster-13 15:36

Investigation of high-energy KGW crystal-based single-pass Raman generator

Xinlin Lv1,2, Junchi Chen1, Yujie Peng1 Yingbin Long1, Guanting Liu1, Yuxin Leng1 ¹State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, China, ²Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

The measured maximum output energy of two-order Stokes lasers is ~676 mJ with 2.8 J pumping energy; this is the highest Stokes energy output of the nanosecond solid-state Raman lasers to the best of our knowledge.

ALPS-Poster-14 15:39

Magneto-optic properties of synthetic quartz for DUV optical isolator

Yuki Tamaru1, Hengjun Chen3 Atsushi Fuchimukai2, Hiyori Uehara1,3, Taisuke Miura², Ryo Yasuhara^{1,3} SOKENDAI (The Graduate University for Advanced Studies), 2GIGAPHOTON INC., ³National Institute for Fusion Science

The Verdet constant in a synthetic quartz was evaluated within the wavelength range of 190-300 nm. This material can be realized the optical isolator for DUV light sources with the moderate magnetic field.

ALPS-Poster-15 15:42

Attenuation by aerosols estimate with bistatic LiDAR in TA experiments

Tomoyuki Nakamura¹, Takayuki Tomida¹, Katuya Yamazaki2, Yuichiro Tameda3, Shigeharu Udo⁴

Graduate School of Shinshu University, ²Chubu University, ³Osaka Electro-Communication University, 4Kanagawa University

Atmospheric observations were measured using bistatic LiDAR with a pulsed UV laser (355 nm). Telescope Array site in Utah, USA. The median of aerosol attenuation at 5 km above the ground is 0.042

ALPS-Poster-16 15:45

All-Optical 40GHz Switch Using Cascade Nonlinearities in a QPM-LN Device

Yutaka Fukuchi, Genki Abe, Kazumasa Kawanaka, Ryoichi Miyauchi Tokyo University of Science

Characteristics of an all-optical switch using a 3-cm QPM-LN are investigated through switching experiments considering the temporal widths of the input clock and signal pulses. Stable and efficient 40GHz to 40GHz operation is successfully demonstrated

ALPS-Poster-17 15:48

Mid-IR DFG Based Radiation with 30 pm Narrow Bandwidth

Lyubomir Ivanov Stoychev^{1,2}, Marco Baruzzo^{2,3}, Jose J. Suarez-Vargas^{2,3}, Humberto Cabrera^{2,4}, Ivaylo Nikolov⁵, Alexander Demidovich⁵, Miltcho Danailov5, Andrea Vacchi ¹Institute of Solid State Physics, BAS, ²INFN, Sezione di Trieste, 3Udine University, 4ICTP, ⁵Elettra-Sincotrone

We present a difference frequency generation (DFG) laser system emitting tunable, narrow-linewidth (<30 pm), mid-infrared radiation around 6.78 µm. Different non-linear materials were studied as LilnS2, LilnSe2 and BaGa4Se7.

ALPS-Poster-18 15:51

Stability of optical beats between longitudinal modes in laser chaos

Fumiyoshi Kuwashima1, Mona Jarrahi², Semih Cakmakayapan², Osamu Morikawa³, Takuya Shirao1, Kazuyuki Iwao1 Kazuyoshi Kurihara4, Hideaki Kitahara5, Takashi Furuya⁵, Kenji Wada⁶ Makoto Nakajima⁷, Masahiko Tani⁵ ¹Fukui Univ. of Tech., ²Electrical and Computer Engineering Department, University of California Los Angeles, ³Chair of Liberal Arts. Japan Coast Guard Academy, 4School of Education., University. of Fukui, 5Research Center for Development of Far-Infrared Region, University of Fukui, ⁶Department of Physics and Electronics, Osaka Prefecture University 7 Institute of Laser engineering, Osaka Univ Stability of optical beats in a chaotically oscillating laser is compared to that of a free-running continuous-wave laser using a highly efficient plasmonic photomixer. The high stability of optical beats in chaotically oscillating lasers is verified.

Tuesday, 20 April

ALPS-Poster-19 15:54

Optical data transmission with a dissipative Kerr soliton in an ultrahigh-Q MgF₂ microresonator

Shuya Tanaka¹, Shun Fujii^{1,2}, Koshiro Wada¹, Hajime Kumazaki¹, Soma Kogure¹, Shun Tasaka1, Tamiki Ohtsuka1 Satoki Kawanishi¹, Takasumi Tanabe¹ ¹Keio university, ²RIKEN Center for Advanced **Photonics**

We transmitted optical data over 40 km using a dissipative Kerr soliton from an MgF2 microresonator. This result shows the potential of a microcomb as a wavelength division multiplexing light source covering the entire C-band.

ALPS-Poster-20 15:57

Development and stability evaluation of all polarization-maintaining optical frequency comb based on Figure9 type

Kohei Kato, Hayato Suga, Masahito Yamanaka, Norihiko Nishizawa

The University of Nagoya

We developed all polarization-maintaining (PM) optical frequency comb based on dispersion managed, Er-doped Figure9 type fiber laser. In order to detect f_{coo} signal with high SNR, we adopted a PM-in-line type delay line and balanced detector. The stable operation in the long period of time was achieved and the standard deviations was sub-mHz level.

ALPS-Poster-21 16:00

High-precision mutual control of two-color fiber combs

Tatsuya Hasegawa¹, Yugo Kusumi¹, Shigeki Sakuma¹, Akifumi Asahara¹ Yoshiaki Nakajima^{1,2}, Ryosuke Shimizu¹, Kaoru Minoshima ¹The University of Electro-Communications,

²Toho University

We developed a technique for precise mutual control of two fiber combs generating different wavelength bands. The repetition frequencies and the relative optical mode frequency are precisely controlled and stabilized to the reference optical clock.

ALPS-Poster-22 16:03

Optical Phase Spectral Control of Orbital Angular Momentum Modes Studied by Dual-comb Imaging **Spectroscopy**

Akifumi Asahara, Takuto Adachi, Seishiro Akiyama, Kaoru Minoshima The University of Electro-Communications

Orbital angular momentum (OAM)dependent phase spectral change is characterized based on dual-comb imaging spectroscopy. The OAM-dependent phase measurement has a great potential as versatile light-wave manipulation technique, such as highly purified optical vortex generation.

ALPS-Poster-23 16:06

A dual-comb ranging system without aliasing based on free-running frequency combs

Ruilin Jiang, Siyu Zhou, Guanhao Wu *Tsinghua University*

We present a free-running dual-comb ranging system. It includes two filtering channels and avoids the spectral aliasing. The system achieves a precision below 10μm and runs stably over long time without any frequency locking.

Wednesday, 21 April

ALPS-16~18

[ALPS-16] 9:00-10:45 Ultra-high intensity lasers, technology and applications

Chair: Hiromitsu Kiriyama National Institutes for Quantum and Radiological Science and Technology

ALPS-16-01 9:00

Invited

10 PetaWatt Lasers for Extreme Light **Physics**

Christophe SIMON-BOISSON Thales LAS France

Ultra-high intensity lasers are nowadays required to explore new frontiers of physics. Recently first ever achieved laser operation above 10 PetaWatt at ELI Nuclear Physics is described.

ALPS-16-02 9:30

Invited

Free-electron laser with compact laser-plasma accelerators

Jeroen van Tilborg Lawrence Berkeley National Laboratory In this presentation, key aspects of laser-plasma-accelerator-driven light sources will be presented, including control of the laser system and accelerator, novel laser and electron beam diagnostics, and the path towards realizing a free-electron laser.

ALPS-16-03 10:00

Ultra-broadband concept for Exawattclass lasers

Zhaoyang Li, Yoshiaki Kato, Junji Kawanaka Osaka University

A new concept is proposed to increase the peak-power of ultra-intense lasers up to the Exawatt-class (1018 watt), and related key challenges are also examined.

ALPS-16-04 10:15

Direct mapping of attosecond electron dynamics

Chuliang Zhou^{1,2}, Yafeng Bai^{1,2}, Ye Tian^{1,2}, Ruxin Li1,

Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Science, ²Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 3ShanghaiTech University

Here we demonstrate a laser streaking concept for revealing the dynamics of free electrons emitted from a plasma mirror. Field-induced electron beam deflection demonstrates subcycle charge dynamics with a streaking speed of ~60 µrad as-1.

ALPS-16-05 10:30

Development of ozone mixed gas optics in vacuum environment for high power lasers

Yurina Michine, Hitoki Yoneda Institute for laser science, University of Electro-Communications

We propose the idea of a gas medium optics with a kJ/cm2 damage threshold that operates maintenance-free in a vacuum environment.

[ALPS-17] 11:15-12:15 **High energy lasers**

Chair: Takashi Sekine Hamamatsu Photonics K.K.

ALPS-17-01 11:15

High energy frequency conversion at 10 Hz

Jonathan Phillips¹, Saumyabrata Banerjee¹, Paul Mason¹, Jodie Smith¹, Jacob Spear¹, Mariastefania De Vido¹, Klaus Ertel¹, Thomas Butcher¹, Gary Quinn^{1,2}, Danielle Clarke^{1,2}, Chris Edwards¹, Cristina Hernandez-Gomez¹, John Collier¹ Science and Technology Facility Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, 2 Institute of Photonic and Quantum Sciences, Heriot-Watt University

We report on the successful demonstration of second and third harmonic conversion of a high pulse energy, high average power 1030 nm diode pumped Yb:YAG nanosecond pulsed laser in a large aperture LBO crystal.

ALPS-17-02 11:45

Towards a first Joule-level activation of PEnELOPE

Daniel Peter Konrad Albach¹, Markus Löser¹, Mathias Siebold¹, Ulrich Schramm^{1,3} ¹Helmholtz-Zentrum Dresden-Rossendorf, ²Technische Universität Dresden

We present a status update of the PENELOPE laser system currently under construction at the Helmholtz-Zentrum Dresden-Rossendorf in order to perform a first activation with pulses on the Joule scale, as well as improvements of the stretcher optics to support laser pulses in the order of 150 fs.

ALPS-17-03 12:00

Pulsed High Voltage System as Spark Pre-Ionizer: Featuring High Energy Stability and Narrow Pulse Repeatability CO2-TEA Lasers for High Spatial Resolution Remote Sensing.

Taieb Gasmi

Saint Louis University-Madrid Campus

We present a novel CO2-TEA nitrogen tail pulse electro-optical shutter using a gas breakdown technique. The system uses a gas pre-ionizing high voltage pulse and lase self-induced gas plasma that absorb the energy contained within the energetic nitrogen tail of CO₂-TEA lasers. The fast high volage pulse generator is an all-solid-state exciter (ASSE) and offers several advantages such as low cost, reliability, and can also be used for high repetition rate operation.

ALPS-19~22

[ALPS-19] 9:00-10:45 Terahertz devices, nonlinear optics and applications1

Chair: Ken Morita Chiba University

Real-time THz color scanner

ALPS-19-01 9:00

Invited

Takeshi Yasui

Tokushima University

Real-time THz color scanner was proposed based on two-dimensional spatio-temporal THz imaging. The proposed system has the potential to expand the application scope of THz spectral imaging based on its rapid image acquisition rate.

ALPS-19-02 9:30

Modular 3D-Printed THz Plasmonic Waveguide Components

Yang Cao, Kathirvel Nallappan Hichem Guerboukha, Guofu Xu, Maksim Skorobogatiy Polytechnique Montreal

THz waveguide-based integrated circuits are of great utility in Terahertz communications. Here we propose a new type of modular 3D-printed micro-encapsulated two-wire plasmonic waveguide components to realize reconfigurable terahertz circuits for signal processing

ALPS-19-03 9:45

Electro-optic sampling on spatio-temporal electric field profile around relativistic electron bunch

Masato Ota1, Koichi Kan2, Soichiro Komada3, Yasunobu Arikawa¹, Tomoki Shimizu¹, Valynn Katrine Mag-Usara1, Youichi Sakawa1, Tatsunosuke Matsui3, Makoto Nakajima ILE Osaka University, ²ISIR Osaka University, ³Mie Universitv

Longitudinal and transverse beam sizes of a relativistic electron bunch are obtained by measuring the spatio-temporal electric field profile through electro-optic sampling. The experimental result is verified by a three-dimensional particle-in-cell simulation.

ALPS-19-04 10:00

Intense Single-cycle Terahertz **Generation on Metal Wires**

Yushan Zeng, Liwei Song, Ye Tian Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences Using metallic wire exposed to high power femtosecond laser pulses, we demonstrated the generation and guidance of millijoulelevel single-cycle Terahertz pulse on the wire

ALPS-19-05 10:15

12 kW Peak Power at 266-nm **Generation by QPM Quartz Device**

Kentaro Yoshii¹, Naoyuki Arai¹, Hideki Ishizuki^{2,3}, Takunori Taira^{2,3} ¹Murata Manufacturing Co., Ltd., ²Institute for Molecular Science, National Institutes of Natural Sciences, ³RIKEN SPring-8 Center

QPM quartz device fabricated by unique bonding technology of high-durability quartz plates could generated a 266-nm wave with 12 kW peak power. Possibility of efficient wavelength conversion by bonded QPM quartz will be discussed.

ALPS-19-06 10:30

Solid Core Dielectric Fibers for 10m Long Terahertz Communication Link

kathirvel nallappan, Yang Cao, Guofu Xu, Hichem Guerboukha, Chahe Nerguizian, Maksim Skorobogatiy

Ecole Polytechnique de Montreal

In this work, we present an in-depth experimental and numerical study of the short-range THz communications links that use subwavelength dielectric fibers for information transmission and define main challenges and trade-offs in the link implementation.

[ALPS-20] 11:15-12:30 Terahertz devices, nonlinear optics and applications2

Chair: Takashi Notake RIKFN

ALPS-20-01 11:15

Numerical Analysis of Coupled-Three-Wave-Mixing in Terahertz Wave **Up-conversion detection**

Shuzhen Fan^{1,2}, Xiaoqin Yin¹, Yongfu Li^{1,2}, Xingyu Zhang^{1,3}, Zhaojun Liu^{1,3}, Xian Zhao^{1,2}, Iiayiong Fang^{1,2,4} Jiaxiona Fana¹

¹Key Laboratory of Laser & Infrared System (Shandong University), Ministry of Education, Center for Optics Research and Engineering (CORE), Shandong University, 3School of Information Science and Engineering, Shandong University, 4Shanghai Institute of Technical Physics, Chinese Academy of Sciences

Difference-Frequency-Generation, which has been widely employed and analysed in Terahertz wave detection by nonlinear frequency up-conversion, usually accompanies with Sum-Frequencygeneration in the nonlinear processes. Numerical analysis is given to help with the experimental scheme design.

ALPS-20-02 11:45

Development of a Noise-free Terahertz Parametric Generator using Highpower Injection Seeding

Sota Mine, Kodo Kawase, Kosuke Murate Nagoya University

In this study, noise-free THz-wave output from an injection-seeded THz-wave parametric generator (is-TPG) was achieved by high-power injection seeding. Compared to the conventional is-TPG, the S/N ratio was improved by more than 40 dB.

ALPS-20-03 12:00

Infinite 3D printed Micro-structured Fiber for THz Communications

Guofu Xu, Kathirvel Nallappan, Yang Cao, Maksim Skorobogatiy Polytechnique Montreal

A micro-structured suspended-core polypropylene fiber is designed and characterized experimentally for signal transmission at 128 GHz carrier frequency The fiber is 3D printed using a 45° inclined nozzle that enables continuous, lengthunlimited Terahertz fiber fabrication.

Wednesday, 21 April

ALPS-16~18

[ALPS-18] 13:15-14:00 High intensity short pulse lasers and technology

Chair: Takashi Sekine Hamamatsu Photonics K.K.

ALPS-18-01 13:15

Generation of High-Energy Pulses in a Yb-Doped All-Double-Cladding-Fiber Mamyshev Oscillator

Tao Wang, Bo Ren, Can Li, Jian Wu, Rongtao Su, Pengfei Ma, Pu Zhou National University of Defense Technology
An all-double-cladding-fiber high-energy Mamyshev oscillator was experimentally demonstrated. The achieved maximum single pulse energy was >80 nJ and could be compressed to <100 fs. The maximum peak power was >1 MW.

ALPS-18-02 13:30

102 nJ pulse energy, 1.5MW peak power generation with an all-fiber gain-managed nonlinearity amplifier

Bo Ren, Tao Wang, Can Li, Jian Wu, Rongtao Su, Pengfei Ma, Pu Zhou National University of Defense Technology An all-fiber gain-managed nonlinearity (GMN) amplifier was experimentally demonstrated. The achieved single pulse energy was 102 nJ and the compressed pulse duration was to 68 fs with 1.5 MW peak power at 1068nm central wavelength.

ALPS-18-03 13:45

Chirped-Pulse Test Signal Source for Picosecond Streak Camera Alignment

Vladimir Ya. Molchanov¹, Konstantin B. Yushkov¹, Pavel V. Kostryukov^{1,2}, Petr B. Gornostaev³, Nikolay S. Vorobiev³ ¹National University of Science and Technology MISIS, ²Lebedev Physical Institute of the Russian Academy of Sciences, ³Prokhorov General Physics Institute of the Russian Academy of Sciences

We demonstrate arbitrary phase-only modulation of chirped laser pulses for in-line calibration and resolution measurement of a picosecond streak camera. A high-resolution acousto-optic dispersive delay line is used in a Ti:sapphire laser system.

[ALPS-Closing] 16:00-16:15 Closing Remarks

Chair: Hitoki Yoneda

Institute for Laser Science, University of Electro-Communications

ALPS-20-04 12:15

The Impact of Extracavity Frequency Doubling in Infrared Yb-doped Pulsed Fiber Laser by Focusing Beam Size in a Nonlinear Crystal

Hsiu-Ting Wu, Yu-Pin Lan, Wen-Chang Huang Huang College of Photonics, National Chiao Tung University

We have proven the experimental results by a theoretical model that the highest second harmonic conversion of 10.63% achieves as a fundamental beam of 28µm within the nonlinear crystal.

[ALPS-21] 13:30-15:00 Optical devices and techniques for bio and medical applications1

Chair: Tsuneyuki Ozaki
INRS-EMT

ALPS-21-01 13:30

Invite

Invited

Development of machine learning approaches for quantitative superresolution imaging of molecular interactions in neurons

Flavie Lavoie Cardinal Laval University, Canada

ALPS-21-02 14:00 Invited

Data and Energy Efficient Ultrafast Time Stretch Optical Imaging

Chao Wang *University of Kent*

ALPS-21-03 14:30

Single fiber fluoresce imaging by multimode interference-based spectral encoder

Takashi Katagiri University of Toyama

A fiber imaging system we have proposed for ultra-small diameter endoscopes is introduced. This system is based on the spectrum encoding and acquires two-dimensional images with a single optical fiber without a lens or scanner.

[ALPS-22] 15:30-16:00 Optical devices and techniques for bio and medical applications2

Chair: Tsuneyuki Ozaki INRS-FMT

ALPS-19~22

ALPS-22-01 15:30

Enhancement of axial resolution of temporal focusing microscopy by using programmable time-multiplexed multi-line focusing

Keisuke Isobe^{1,2}, Kenta Inazawa^{1,3}, Tomohiro Ishikawa^{1,3}, Fumihiko Kannari ³, Kana Namiki⁴, Atsushi Miyawaki^{4,1}, Katsumi Midorikawa¹

¹RIKEN Center for Advanced Photonics, ²Kyoto University, ³Keio University, ⁴RIKEN Center for Brain Science

We solve the conflict between imaging speed and axial resolution in temporal focusing microscopy by using programmable time-multiplexed multi-line focusing with a digital micromirror device.

ALPS-22-02 15:45

Adaptive optics of wide-field temporal focusing microscopy combined with structured illumination microscopy

Tomohiro Ishikawa^{1,2}, Keisuke Isobe^{1,3}, Kenta Inazawa^{1,2}, Fumihiko Kannari², Katsumi Midorikawa¹

¹RIKEN, ²Keio University, ³Kyoto University
We demonstrated adaptive optics of
wide-field temporal focusing microscopy
under the condition of a strong out-of-focus
fluorescence and a thick sample, which was
based on the spatio-temporal lock-in
detection with structured illumination
microscopy.

Poster

[ALPS-P] **ALPS Poster Session**

ALPS-P-01

Fabrication of highly-doped Er:Y2O3 transparent ceramics by pulsed electric current sintering (PECS)

Daigo Ueno, Mayu Imai, Masaya Akagawa, Hiroaki Furuse

Kitami Institute of Technology

Transparent Er highly doped Y₂O₃ ceramics with fine microstructures were fabricated by pulsed electric current sintering (PECS) technique. In this study, their optical properties and microstructures were studied. ALPS-P-06

ALPS-P-02

Optical properties of hexagonal fluorapatite (FAP) polycrystalline

Daichi Kato¹, Takumi Kato¹, Naohiro Horiuchi², Koji Morita³, Byung-Nam Kim³, Hiroaki Furuse¹ ¹Kitami Institute of Technology, ²Tokyo Medical and Dental University, 3 National Institute for Materials Science

We fabricated non-cubic transparent fluorapatite ceramics by using pulsed electric current sintering (PECS) technique. Their optical properties and microstructures for various sintering temperature and optimal sintering condition will be discussed.

ALPS-P-03

Development of Watt-class High-Power Mid-Infrared Quantum Cascade Laser and application for laser processing

Akio Ito1, Takahide Ochiai1 Tatsuo Dougakiuchi¹, Nobutaka Suzuki¹, Atsushi Sugiyama¹, Naota Akikusa¹, Tadataka Edamura¹, Hidehiko Yashiro², Masayuki Kakehata², Nobuhiro Umebayashi²,

¹Hamamatsu Photonics K.K., ²National Institute of Advanced Industrial Science and Technology (AIST)

Watt-class high-power quantum cascade laser (QCL) was developed with polarized beam combine technique at I=8.6 mm. High efficient laser thermal processing such as PTFE can be performed thanks to large absorption in mid-infrared.

ALPS-P-04

Beam shaping of fiber-out midinfrared quantum cascade laser

Takahide Ochiai¹, Akio Ito¹, Tatsuo Dougakiuchi¹, Nobutaka Suzuki¹, Atsushi Sugiyama¹, Naota Akikusa¹, Tadataka Edamura¹, Hidehiko Yashiro², Masayuki Kakehata2, Nobuhiro Umebayashi2, Tadatake Sato²

¹Hamamatsu Photonics K.K., ²National Institute of Advanced Industrial Science and Technology

Fiber delivery mid-infrared quantum cascade laser module using a hollow fiber was developed. Top-hat intensity profile of output was realized by mode scrambling, and line-shaped irradiation was obtained with a ZnSe diffractive optical element (DOE).

ALPS-P-05

Optical characterization of sapphire/ YAG ceramic composite by Pulsed Electric Current Bonding (PECB)

Yuki Kagami¹, Hiroyuki Tanaka¹, Ryo Yasuhara², Hiroaki Furuse¹

¹Kitami Institute of Technology, ²National Institute for Fusion Science

The optical properties including laser performance of sapphire/Nd:YAG composite by pulsed electric current bonding was studied for various initial surface flatness conditions

1 J/100 Hz ns laser pulses generation from cryogenically-cooled Yb:YAG rod amplifier with ink-cladding

Shotaro Kitajima¹, Jumpei Ogino¹, Shigeki Tokita¹, Zhaoyang Li¹, Shinji Motokoshi², Noboru morio¹ Koji Tsubakimoto¹, Hidetsugu Yoshida¹, Kana Fujioka1, Ken-ichi Ueda3 Ryosuke Kodama1, Junji Kawanaka1 ¹Institute of Laser Engineering, Osaka University, ²Institute of Laser Technology, ³Institute for Laser Science, University of Flectro-Communications

A stable operation of 1.1 J/100 Hz 10 ns laser pulses were achieved from a single cryogenically cooled Yb:YAG rod amplifier with ink-cladding. The efficiency and gain coefficient were 44% and 383, respectively.

ALPS-P-07

Narrow Linewidth Cr:forsterite Master-Oscillator Power-Amplifier Laser System with > 45 mJ Output

Lyubomir Ivanov Stoychev^{1,2}, Marco Baruzzo^{2,3}, Jose J. Suarez-Vargas^{2,3}, Humberto Cabrera^{2,4}, Ivaylo Nikolov5, Alexander Demidovich5, Miltcho Danailov⁵, Andrea Vacchi² ¹Institute of Solid State Physics, BAS, ²INFN, Sezione di Trieste, 3Udine University, 4ICTP, ⁵Elettra-Sincotrone

A master-oscillator power-amplifier Cr:forsterite laser is presented with output energy of 45 mJ and narrow linewidth of 0.5 pm (95 MHz) and beam quality factor $M_x^2 = 1.94$, $M_y^2 = 1.70$.

ALPS-P-08

Dependence of CEP on the angle of incidence to the diffraction grating in chirped pulse amplification

Kaito Nishimiya, Takuma Noda, Kento Kubomura, Akira Suda Tokyo University of Science

For CEP stabilization in a diffraction grating-based CPA system, the dependence of CEP on the angle of incidence to the diffraction grating and the f-2f interferometer is investigated by experiment and calculation.

ALPS-P-09

Enhanced Self Focusing of q-Gaussian Laser Beams in Thermal Quantum Plasma with Axial Density Ramp: **Effect of Ponderomotive Nonlinearity**

Naveen Gupta Gupta¹, Sanjeev Kumar^{1,2} S. B. Bhardwaj3

¹Lovely Professional University, ²Government college for women Karnal, ³Pt. C. L. S College

Theoretical investigation on self focusing of q-Gaussian laser beam interacting with thermal quantum plasma has been investigated theoretically

ALPS-P-10

Few ns 0-switched Tm fiber laser

Takumi Yatsuda, Masaki Tokurakawa University of Electro-Communications, ILS We report an AOM Q-switched Tm fiber laser. Pulses as short as 3 ns with 80 μJ pulse energy was obtained. The mechanism of the pulse shortening would be attributed to Stimulated Brillouin back scattering.

ALPS-P-11

2 µm mode-locked lasers with normal dispersion Tm doped gain fibers

Yuya Uchizono¹, Takumi Sato¹, Yuhao Chen², Raghuraman Sidharthan², Seong Woo Yoo², Masaki Tokurakawa¹

¹University of Electro-Communications, ILS, ²Nanyang Technological University

Using W-type index profile normal dispersion Tm silica fiber, 4 nJ pulse energy with ~60 nm spectral bandwidth was obtained. From Mamyshev configuration oscillator with Tm:ZBLAN double clad fiber, CW output was obtained.

ALPS-P-12

Study on Improvement of Velocity Measurement Accuracy in a Distance and Velocity Simultaneous Measurement Sensor by Self-Coupling **Effect**

Daiki Sato, Masanari Yamada, Daisuke Mizushima, Norio Tsuda, Jun Yamada Aichi Institute of Technology

The semiconductor laser is modulated with triangular or arbitrary triangular waveforms, and the velocity is measured from the self-coupled signal obtained by the built-in photodiode. The measurement accuracy of the velocity is discussed.

Investigation of high-energy KGW crystal-based single-pass Raman generator

Xinlin Lv1,2, Junchi Chen1, Yujie Peng1 Yingbin Long1, Guanting Liu1, Yuxin Leng1 ¹State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, China, ²Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

The measured maximum output energy of two-order Stokes lasers is ~676 mJ with 2.8 J pumping energy; this is the highest Stokes energy output of the nanosecond solid-state Raman lasers to the best of our knowledge.

ALPS-P-14

Magneto-optic properties of synthetic quartz for DUV optical isolator

Yuki Tamaru1, Hengjun Chen3 Atsushi Fuchimukai2, Hiyori Uehara1,3, Taisuke Miura², Ryo Yasuhara^{1,3} SOKENDAI (The Graduate University for Advanced Studies), 2GIGAPHOTON INC., ³National Institute for Fusion Science

The Verdet constant in a synthetic quartz was evaluated within the wavelength range of 190-300 nm. This material can be realized the optical isolator for DUV light sources with the moderate magnetic field.

ALPS-P-15

Attenuation by aerosols estimate with bistatic LiDAR in TA experiments.

Tomoyuki Nakamura¹, Takayuki Tomida¹, Katuya Yamazaki2, Yuichiro Tameda3, Shigeharu Udo⁴

Graduate School of Shinshu University, ²Chubu University, ³Osaka Electro-Communication University, 4Kanagawa University

Atmospheric observations were measured using bistatic LiDAR with a pulsed UV laser (355 nm). Telescope Array site in Utah, USA. The median of aerosol attenuation at 5 km above the ground is 0.042.

ALPS-P-16

All-Optical 40GHz Switch Using Cascade Nonlinearities in a QPM-LN

Yutaka Fukuchi, Genki Abe, Kazumasa Kawanaka, Ryoichi Miyauchi Tokyo University of Science

Characteristics of an all-optical switch using a 3-cm QPM-LN are investigated through switching experiments considering the temporal widths of the input clock and signal pulses. Stable and efficient 40GHz to 40GHz operation is successfully demonstrated.

ALPS-P-17

Mid-IR DFG Based Radiation with 30 pm Narrow Bandwidth

Lyubomir Ivanov Stoychev^{1,2}, Marco Baruzzo^{2,3}, Jose J. Suarez-Vargas^{2,3}, Humberto Cabrera^{2,4}, Ivaylo Nikolov⁵, Alexander Demidovich⁵, Miltcho Danailov5, Andrea Vacchi ¹Institute of Solid State Physics, BAS, ²INFN, Sezione di Trieste, 3Udine University, 4ICTP, ⁵Elettra-Sincotrone

We present a difference frequency generation (DFG) laser system emitting tunable, narrow-linewidth (<30 pm), mid-infrared radiation around 6.78 µm. Different non-linear materials were studied as LilnS2, LilnSe2 and BaGa4Se7.

ALPS-P-18

Stability of optical beats between longitudinal modes in laser chaos

Fumiyoshi Kuwashima1, Mona Jarrahi², Semih Cakmakayapan², Osamu Morikawa³, Takuya Shirao1, Kazuyuki Iwao1 Kazuyoshi Kurihara4, Hideaki Kitahara5, Takashi Furuya⁵, Kenji Wada⁶ Makoto Nakajima⁷, Masahiko Tani⁵ ¹Fukui Univ. of Tech., ²Electrical and Computer Engineering Department, University of California Los Angeles, ³Chair of Liberal Arts. Japan Coast Guard Academy, 4School of Education., University. of Fukui, 5Research Center for Development of Far-Infrared Region, University of Fukui, ⁶Department of Physics and Electronics, Osaka Prefecture University 7 Institute of Laser engineering, Osaka Univ Stability of optical beats in a chaotically oscillating laser is compared to that of a free-running continuous-wave laser using a highly efficient plasmonic photomixer. The high stability of optical beats in chaotically oscillating lasers is verified.

Poster

ALPS-P-19

Optical data transmission with a dissipative Kerr soliton in an ultrahigh-Q MgF₂ microresonator

Shuya Tanaka¹, Shun Fujii^{1,2}, Koshiro Wada¹, Hajime Kumazaki¹, Soma Kogure¹, Shun Tasaka1, Tamiki Ohtsuka1 Satoki Kawanishi¹, Takasumi Tanabe¹ ¹Keio university, ²RIKEN Center for Advanced **Photonics**

We transmitted optical data over 40 km using a dissipative Kerr soliton from an MgF2 microresonator. This result shows the potential of a microcomb as a wavelength division multiplexing light source covering the entire C-band.

ALPS-P-20

Development and stability evaluation of all polarization-maintaining optical frequency comb based on Figure9 type

Kohei Kato, Hayato Suga, Masahito Yamanaka, Norihiko Nishizawa

The University of Nagoya

We developed all polarization-maintaining (PM) optical frequency comb based on dispersion managed, Er-doped Figure9 type fiber laser. In order to detect f_{coo} signal with high SNR, we adopted a PM-in-line type delay line and balanced detector. The stable operation in the long period of time was achieved and the standard deviations was sub-mHz level.

ALPS-P-21

High-precision mutual control of two-color fiber combs

Tatsuya Hasegawa¹, Yugo Kusumi¹, Shigeki Sakuma¹, Akifumi Asahara¹ Yoshiaki Nakajima^{1,2}, Ryosuke Shimizu¹, Kaoru Minoshima ¹The University of Electro-Communications,

²Toho University

We developed a technique for precise mutual control of two fiber combs generating different wavelength bands. The repetition frequencies and the relative optical mode frequency are precisely controlled and stabilized to the reference optical clock.

ALPS-P-22

Optical Phase Spectral Control of Orbital Angular Momentum Modes Studied by Dual-comb Imaging **Spectroscopy**

Akifumi Asahara, Takuto Adachi, Seishiro Akiyama, Kaoru Minoshima The University of Electro-Communications

Orbital angular momentum (OAM)-dependent phase spectral change is characterized based on dual-comb imaging spectroscopy. The OAM-dependent phase measurement has a great potential as versatile light-wave manipulation technique, such as highly purified optical vortex generation.

ALPS-P-23

A dual-comb ranging system without aliasing based on free-running frequency combs

Ruilin Jiang, Siyu Zhou, Guanhao Wu *Tsinghua University*

We present a free-running dual-comb ranging system. It includes two filtering channels and avoids the spectral aliasing. The system achieves a precision below 10μm and runs stably over long time without any frequency locking.