Monday, 19 April

[HEDS-Opening] 9:00-9:10 **Opening Remarks** Chair: Ryosuke Kodama Osaka University

[HEDS-1] 9:10-10:25 Acceleration/Diagnostics I

Chair: Yasuhiro Kuramitsu Osaka University

HEDS-1-01 9:10

Controlled injection of relativistic protons in wake-field by using dual-laser pulses

Invited

Shogo Isayama¹, Shih Hung Chen², Han Wei Chen2, Yao Li Liu2, Yasuhiro Kuramitsu³, Yuji Fukuda4 ¹Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, ²Department of Physics, National Central University, ³Graduate School of Engineering, Osaka University, ⁴KPSI, QST

We propose an efficient hybrid acceleration scheme to generate relativistic protons using dual pulses and solid density and near critical density foils in tandem. The acceleration mechanism is the two stage acceleration process of radiation pressure acceleration and laser wakefield acceleration where the injection of relativistic ions into the wakefield is controlled by the parameters of the dual pulses

HEDS-1-02 9:35

Wakefield Excitation and Associated Particle Acceleration in Relativistic **Collisionless Shocks**

Masanori Iwamoto¹, Takanobu Amano² Yosuke Matsumoto³, Shuichi Matsukiyo¹ Masahiro Hoshino²

¹Kyushu University, ²University of Tokyo, ³Chiba Universitv

Relativistic collisionless shocks are ubiquitous in the universe, in which synchrotron maser instability produces intense electromagnetic waves and then induces wakefield in the upstream. Our 2D PIC simulation indeed confirms the wakefield excitation and demonstrates the particle acceleration in the upstream. In this talk, we discuss the mechanism of this particle acceleration in details

HEDS-1-03 10:00

High energy density plasmas produced by the interaction between high intensity laser and structured medium ~A new platform studying magnetic confined plasmas using laser~

Yasuaki Kishimoto, Kenji Imadera, Ryutaro Matsui

Kvoto Universitv

We studied high energy density plasmas by the interaction between high intensity laser and structure medium with sub-micron meter and found a new confinement state exceeding inertia time dominated by coherent magnetic structure

[HEDS-2] 10:45-11:50 **Acceleration/Diagnostics II** Chair: Yasuhiro Kuramitsu

Osaka University

HEDS-2-01 10:45 Investigating kinetic-scale current filamentation dynamics and associated magnetic fields in interpenetrating plasmas

George Swadling¹, Colin Bruulsema², Frederico Fiuza³, Drew Higginson¹, Channing Huntington¹, Hye-Sook Park¹, Brad Pollock1, Wojciech Rozmus2 Hans Rinderknecht⁴, Joe Katz⁴, Andrew Birkel⁵, James Ross1

¹LLNL, ²University of Alberta, ³SLAC National Accelerator, ⁴Laboratory for Laser Energetics, ⁵Plasma Science and Fusion Center, MIT lon-stream filamentation and magnetic field generation was observed in interpenetrating plasmas, driven by the ion-Weibel instability. The interactions of counter propagating, collisionless plasma flows were probed using Thomson scattering, revealing anticorrelated modulations in the density of the two streams at the ion skin depth scale, and a correlated modulation in the plasma current consistent with a magnetic field amplitude ~ 30 ± 6 T, ~ 1% of the flow KE.

HEDS-2-02 11:10 Invited Applications of Solid State Nuclear Track Detectors for Measurements of

Laser-Accelerated lons

Masato Kanasaki

Invited

Invited

Kobe University The characteristics and the methods of using solid state nuclear track detectors as an ion detector are introduced with the results from the recent studies measuring laser-accelerated ions.

HEDS-2-03 11:35

X-ray spectroscopy of relativistic plasma with controlled preplasma formation at J-KAREN-P experiments

Tatiana Pikuz^{1,2}, Maria A Alkhimova² Sergey N Ryazantsev², Igor Yu Skobelev^{2,3} Sergey Pikuz^{2,3}, Artem S Martynenko², Maxim V Sedov², Alexey N Shatokhin^{4,5} Eugene A Vishnyakov⁴, Akito Sagisaka⁶ Koichi Ogura⁶, Bruno Gonzalez Izquierdo⁶ Kotaro Kondo⁶, Yasuhiro Miyasaka⁶, Akira Kon⁶, Masahiko Ishino⁶, Masaharu Nishikino⁶, Timur Zh Esirkepov⁶, James K Koga⁶ Masaki Kando⁶, Hiromitsu Kiriyama⁶, Kinimori Kondo⁶, Ryosuke Kodama^{7,8} Tetsuya Kawachi⁶, Yuji Fukuda⁶ Alexander S Pirozhkov⁶, Youichi Sakawa⁷ ¹OTRI, Osaka University, ²JIHT, RAS, ³National Research Nuclear University MEPhl, ⁴P.N. Lebedev Physical Institute, RAS, 5 Moscow Institute of Physics and Technology, 6KPSI, QST, ⁷ILE, Osaka University, ⁸Graduate School of Engineering, Osaka University, We will report on the new experiments performed at PW-class J-KAREN-P laser with the tailored plasma density profile created by specially incorporated prepulse both from the front and rear side of the solid target. The detailed analysis of plasma parameters provided by means of highresolution x-ray spectroscopic methods. based on emission characteristics of plasma in the spectral range of Ne-like Fe and H-like Cl ionization states will be presented.

[HEDS-3] 13:00-15:00 Diagnostics/Reconnection Chair: Tatiana Pikuz Osaka University

Invited HEDS-3-01 13:00

Cosmic Ray Muon Imaging of Khufu's Pyramid with Nuclear Emulsions Kunihiro Morishima

Invited

Invited

Nagoya University We are developing the nuclear emulsion technologies for observation of cosmic rays and its analysis for cosmic ray muon imaging

HEDS-3-02 13:25

A Scintillator-based detector system to measure GeV class ions

Atsushi Tokiyasu¹, Yasuhiro Kuramitsu², Takumi Minami², Kou Iwasaki², Hideki Kohri³, Yuki Abe⁴, Yuji Fukuda⁵, Satoshi Kodaira⁶, Takafumi Asai⁷, Masato Kanasaki⁷ Research Center for Electron Photon science, Tohoku Univeristy, 2 Graduate School of Engineering, Osaka University, 3RCNP, Osaka University, ⁴ILE, Osaka University, ⁵KPSI, QST, ⁶NIRS, QST, ⁷Graduate School of Maritime Sciences, Kobe University

It is essential to measure the energy of the accelerated ions in a real time manner to reveal the mechanism of laser ion acceleration. For this purpose, we proposed a detector system composed of scintillators and PMTs. In this talk, the detection principle and design concepts are reviewed. Test experimental results using HIMAC facility is reported. Future prospect to use the system for laser ion acceleration experiments with J-KAREN laser facility is also discussed.

HEDS-3-03 13:50

A New Measurement Method for Laser-accelerated Sub-GeV Protons utilizing Multiple Coulomb Scattering in an Emulsion Cloud Chamber

Takafumi Asai^{1,2}, Masato Kanasaki¹ Satoshi Jinno³, Nobuko Kitagawa⁴ Nobumichi Shutoh⁵, Satoshi Kodaira⁶, Tomoya Yamauchi¹, Keiji Oda¹, Kunihiro Morishima⁴, Yuji Fukuda⁴ ¹Kobe University, ²QST-KPSI, ³The University of Tokyo, ⁴Nagoya University, ⁵Kindai University, ⁶QST-NIRS

We have developed a new measurement method for laser-accelerated sub-GeV-class protons utilizing a multiple Coulomb scattering method in an Emulsion Cloud Chamber which is a stack of nuclear emulsion films and scatterer plates.

HEDS-3-04 14:05

Generation of Megatesla Magnetic Fields by Microtube Implosion

Invited

Masakatsu Murakami¹, Javier Honrubia², Katheleen Weichman³, Alex Arefiev³ Sergei Bulanov

¹Osaka University, ²Universidad Politécnica de Madrid, ³UCSD, ⁴ELI-Beamline

We have recently proposed a novel mechanism called a "microtube implosion," and demonstrated the generation of megatesla (MT) order magnetic fields via particle simulations. This is three orders of magnitude higher than what has ever been achieved in a laboratory. Such high magnetic fields are expected only in celestial bodies like neutron stars and black holes.

HEDS-3-05 14:30 Experimental investigation of magnetic reconnection in laser-driven self-generated magnetic field

Taichi Morita¹, Suzuto Matsuo², Takuto Kojima², Kento Aihara³, Yasunobu Arikawa⁴, Shunsuke Egashira⁴, Shogo Isayama¹ Otono Kuramoto⁴, Shuichi Matsukiyo¹ Yushiro Matsumoto4, Kentaro Sakai5 Kei Sugiyama³, Taichi Takezaki⁶, Ryo Yamazaki³, Youichi Sakawa⁴ ¹Faculty of Engineering Sciences. Kyushu University, 2Interdisciplinary, Graduate School of Engineering Sciences, Kyushu University, ³Department of Physics and Mathematics, Aoyama Gakuin University, ⁴ILE, Osaka University, ⁵Graduate School of Engineering, Osaka University, ⁶Faculty of Engineering, University of Toyama

We report the magnetic reconnection experiments with Gekko-XII laser beams. Magnetic reconnection was driven between adjacent two plasma plumes, and some plasma parameters and magnetic field structures around the diffusion region were measured and analysed.

Program

HEDS-3-06 14:45

Tin Droplet CO2-laser Ablation Plasma **Dynamics and EUV Emission**

Sergey V. Zakharov^{2,4}, Vassily S. Zakharov^{1,2,3}, Xinbing Wang³

¹Keldysh Institute of Applied Mathematics RAS, ²NRC 'Kurchatov Institute', ³Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 4EATS Laser-produced plasma (LPP) induced during irradiation of a liquid tin droplet by CO2laser pulse with various pulse durations and energies is considered. The radiative magnetohydrodynamic (RMHD) plasma code Zstar is used to simulate the emission and plasma dynamics

[HEDS-4] 15:30-17:50

Collisionless Shock/Acceleration Chair: Yuji Fukuda 0 ST

HEDS-4-01 15:30

Fast Particle Acceleration Mechanisms in Astroplasma and Laboratory Astrophysics

Invited

Masahiro Hoshino¹, Y. Matsumoto², M. Iwamoto³, T. Amano¹ The University of Tokyo, ²Chiba University, 3Kvushu Universitv

In the Universe, cosmic rays with energies up to 10^{15.5} eV are widely recognized to be accelerated by supernova shocks, and the more energetic cosmic rays with energies up to 10²⁰ eV are believed to be generated by extragalactic relativistic shocks. The plasma mechanisms of those particle acceleration are still major unresolved problem, and we discuss our perspective of the astrophysical shock dynamics based on various plasma instabilities.

Monday, 19 April

HEDS-4-02 15:55

Microstructures at near-Sun solar wind perpendicular interplanetary shocks: Predictions for Parker Solar Probe and Solar Orbiter Zhongwei Yang¹, Shuichi Matsukiyo²

² State Key Laboratory of Space Weather, National Space Science Center, ²Faculty of Engineering Sciences, Kyushu University Based on the plasma parameters estimated from PSP at 10R_s, microinstabilities and waves excited at perpendicular interplanetary shocks in the near-Sun solar wind are investigated by PIC simulations. Key findings: different types of ES waves are observed. The 1st one is ECH waves excited by ECDI, and the 2rd one around the upper hybrid frequency is excited by the accelerated ring-like electrons and the incident core. X mode emission is also observed.

HEDS-4-03 16:20

Kinetic Modeling of Electron Preacceleration at Low Mach Number Shocks in Merging Galaxy Clusters

Jacek Niemiec¹, Öleh Kobzar², Takanobu Amano³, Masahiro Hoshino³, Shuichi Matsukiyo⁴, Yosuke Matsumoto⁵, Martin Pohl^{6,7}, Karol Fułat⁸ ¹Institute of Nuclear Physics Polish Academy of Sciences, ²Astronomical Observatory, Jagiellonian University, ³University of Tokyo, ⁴Kyushu University, ⁵Chiba University of Potsdam, ⁷DESY-Zeuthen, ⁶Faculty of Physics and Applied Computer Science, AGH University of Science and Technology

We report on recent large-scale 2D PIC studies of electron pre-acceleration in low-Mach-number shocks in high beta plasmas. We investigate the effects of shock front rippling and multi-scale turbulence in the shock transition on electron energization. We show that electron injection to DSA can be provided through the process of stochastic shock-drift acceleration.

HEDS-4-04 16:45

Energy spectra measured by New Horizon Mission around an interplanetary shock near Pluto: PIC simulations versus in situ experimental results

Bertrand Lembege¹, Zhongwei Yang^{1,2} ¹LATMOS-UVSQ-CNRS, ²National Space Science Center -CAS

While traveling though the interplanetary medium, New Horizon's space mission has succeeded to measure very detailed energy spectra of solar wind and pickup ions (PUIs) in the upstream region of an interplanetary shock in Pluto environment at a distance of 34 A.U.[1]. Recent 1D PIC simulations of a shock have been performed including different solar wind ion (SWIs) and pick up ion (PUIs) populations and are compared with experimental data [2].

Invited HEDS-4-05 17:10

Electron heating and ion acceleration in ultrarelativistic laser-solid interactions

Nicholas P Dover^{1,2}, Hironao Sakaki² Akira Kon², Kotaro Kondo², Hazel F Lowe², Oliver C Ettlinger¹, Mariya A Alkhimova³, Emma Jane Ditter¹, Anatoly Ya. Faenov^{4,3}, Masahara Hata⁴, George S Hicks¹ Matsumi wata⁴, Hiromitsu Kiriyama², James K Koga², Takumi Miyahara^{5,2}, Tatsuhiko Miyatake^{5,2}, Tatiana A Pikuz^{4,3}, Alexander S Pirozhkov², Akito Sagisaka², Ulrich Schramm⁶, Yasuhiko Sentoku⁴, Kenichi Shiokawa^{5,2}, Yukinobu Watanabe⁵, Tim Ziegler⁶, Karl Zeil⁶, Masaki Kando² Kiminori Kondo², Zulfikar Najmudin¹, Mamiko Nishiuchi² ¹Imperial College London, ²KPSI, ³RAS, ⁴Osaka University, ⁵Kyushu University, ⁶HZDR We investigated the acceleration of energetic electrons and ions generated during ultra-high intensity laser-solid interactions, measuring the beam scaling with laser intensity. This leads to a stable proton source exceeding 30 MeV at 0.1 Hz.

HEDS-4-06 17:35

Invited

Invited

X-ray spectroscopy evidence of solid-density ultra-relativistic laser plasma in renewable micron-scale cryogenic clusters targets.

Sergey N. Ryazantsev^{1,2}, T.A. Pikuz^{1,3}, S. A. Pikuz^{1,2}, T. Kaji⁴, H. Tanabe⁴, T. Nakagawa⁴, T. Asai^{4,8}, M. Kanasaki⁴, K. Himeno⁷, K. Iwasaki⁷, K. Sakai⁷, T. Minami⁸, Y. Abe⁹, A. Tokiyasu⁹, H. Kohri¹⁰, Y. Kuramitsu⁷, Y. Sakawa⁸, Y. Miyasaka⁵, Ko. Kondo⁵, A. Kon⁵, A. S. Pirozhkov⁵, M. Kando⁵, K. Kondo⁵, A. S. Pirozhkov⁵, M. Kando⁵, K. Kondo⁵, T. Kawachi⁸, H. Kiryama⁸, Y. Fukuda⁵ *'JIHT*, RAS, ²National Research Nuclear University MEPhI, ³OTRI, Osaka University, ⁴Graduate School of Maritime Sciences, ⁵KPSI, QST, ⁶Nuclear Professional School, The University of Tokyo, ⁷Graduate School of Engineering Osaka University, ⁸LE, Osaka University, ⁸ELPH, Tohoku University, ¹⁰RCNP, Osaka University

Features of plasma X-ray spectracorresponding to a case of a high-intensity laser pulse interaction with a microns-scale cluster are discussed. The spectra were measured during irradiation of cryogenic (T = 140 K – 220 K) Ar flows by ultra-intensive (I = 10^{22} W/cm²) femtosecond laser pulses generated by the J-KAREN-P laser.

HEDS

Invited

[HEDS-5] 9:00-10:15 Radiation I

Chair: Shuta Tanaka Aoyama Gakuin University

HEDS-5-01 9:00

The electromagnetic cascade in neutron star and black hole magnetospheres Shota Kisaka

Hiroshima University

The plasma injection mechanism to a relativistic outflow from neutron stars and black holes is long standing problem. The electromagnetic cascade in the magnetospheres is likely the source of plasma. As a result of pair cascade, the momentum distribution of flows consists of two component, a beam and a quasi-thermal component. We discuss the radiation mechanisms and the plasma processes in the neutron star and black hole magnetospheres based on PIC simulation results.

HEDS-5-02 9:25 Invited Direct cosmic-ray measurements with CALET on the International Space

Station Yosui Akaike

Waseda University

The CALorimetric Electron Telescope (CALET), launched on August 2015, is a high-energy astroparticle physics experiment on the International Space Station to precisely measure the cosmic-ray electrons, gamma-rays and nuclei. The detector features the thickness of 30 radiation lengths and fine imaging capability, providing high energy resolution and particle identification. The detail of the on-orbit performance and the latest results will be presented.

HEDS-5-03 9:50 Invited An Experimental Challenge with Accelerator and Plasma to Astrophysical Fast Radio Bursts Astrophysical Fast Radio Bursts

Yoske Sumitomo¹, Tomohiko Asai¹, Shota Kisaka², Yasushi Hayakawa¹, Shigeru Inagaki³, Norita Kawanaka⁴, Daichi Kobayashi¹, Haruhisa Koguchi⁵, Shiomi Kumagai¹, Takeshi Sakai¹, Norihiro Sei⁵, Taichi Seki¹ *'Nihon University, ²Hiroshima University,*

³Kyushu University, ⁴Kyoto University, ⁵AIST The Fast Radio Bursts are one of mysterious and highly bright astrophysical events whose mechanism is not yet understood. Now, we are initializing a research project mimicking the Fast Radio Bursts at our accelerator laboratory with our plasma technology. Here we illustrate two ongoing experiments focusing on the non-linear enhancement mechanisms of radiations from relativistic electrons.

Tuesday, 20 April

[HEDS-6] 10:35-11:35

Radiation II Chair: Shuta Tanaka Aoyama Gakuin University

Invited HEDS-6-01 10:35

Formation of a Supercritical Collisionless Shock in a Magnetized Uniform Plasma at Rest

Ryo Yamazaki¹, S. J. Tanaka¹, S. Matsukiyo³, T. Morita¹, T. Takezaki⁸, T. Umeda⁵, Y. Ohira⁶, K. Tomita⁹, Y. Kuramitsu², Y. Sakawa², N. Ohnishi⁴, A. Ishii⁷ 'Aoyama Gakuin University, ²Osaka University, ³Kyushu University, ⁴Tohoku University, ⁶Nagoya

University, ^eThe University of Tokyo, ⁻Max Planck Institute for Gravitational Physics, [®]University of Toyama, [®]Hokkaido University We present our recent attempt to excite a collisionless shock propagating into magnetized plasma at rest using kilo-Juleclass high-power lasers. With a help of laser Thomson scattering and plasma self emission measurements, we see a possible signature of the collisionless shock with Alfven Mach number larger of around 15.

HEDS-6-02 10:50

Collective Thomson scattering as a diagnostics for non-equilibrium plasmas

Kentaro Sakai¹, Shogo Isayama², Taichi Morita³, Shuichi Matsukiyo², Yasuhiro Kuramitsu¹

¹Graduate School of Engineering, Osaka University, ²Department of Advanced Environmental Science and Engineering, Kyushu University, 3Department of Advanced Energy Engineering Science, Kyushu University We investigated collective Thomson scattering (CTS) in analytical and numerical manners to establish the analysis of non-equilibrium plasmas. Since the CTS spectrum in high energy density plasmas showing non-equilibrium distribution function is not well-understood, we theoretically calculate and numerically simulate the CTS spectrum. Our results makes it possible to directly measure two-stream instability via CTS.

HEDS-6-03 11:05

Multiple diagnostics in laser-plasma experiment at ~10²² W/cm²

Alexander Pirozhkov¹, A. Sagisaka¹, K. Ogura¹, T.Zh. Esirkepov¹, B. Gonzalez Izquierdo¹, A.N. Shatokhin^{2,3}, E.A. Vishnyakov², C. Armstrong⁴, T.A. Pikuz^{5,6}, M.A. Alkhimova⁶, S.A. Pikuz⁶, W. Yan⁷, T.M. Jeong⁷, S. Singh⁸, P. Hadjisolomou⁷, O. Finke⁷, G. Grittani⁷, M. Nevrkla⁷, C. Lazzarini⁷, A. Velyhan⁷, T. Hayakawa⁹, Y. Fukuda¹, J.K. Koga¹, M. Ishino¹, Ko. Kondo¹, Y. Miyasaka¹, A. Kon¹, M. Ishino¹, Ko. Kondo¹, Y. Miyasaka¹, A. Kon¹, M. Ishikino¹, A.O. Kolesnikov^{2,3}, et. al. ^{10,11} ¹*KPSI*, *QST*, ²*LPI BAS*, ³*MIPT*, ⁴*CLF RAL*, ⁵*OTRI*, *Osaka University*, ⁶*JIHT RAS*, ⁷*ELI-Beamlines*, ⁸*IPP ASCR*, ⁹*TARRI*, *QST*, ¹⁰*KIAM RAS*, ¹¹*Dep*. *Phys.*, *University of Strathclyde*

We present multi-diagnostic results from laser-plasma experiment at ~10²² W/cm², including optical and high harmonics, soft x-rays, keV x-rays, and sub-MeV x-rays. We discuss methods to find at-focus target position and compare intensity dependences.

Tuesday, 20 April

HEDS-6-04 11:20

Experimental Observation of Induced Compton Scattered Radiation with J-KAREN P Laser

Shuta Tanaka¹, Yasuhiro Kuramitsu², Yuji Fukuda³, Ryo Yamazaki^{1,2}, Youichi Sakawa² *'Aoyama Gakuin University, ²Osaka University, 3KPSI*

We report some experimental results of induced Compton scattering in order to observe the characteristic spectral signatures of induced Compton scattered light predicted by our previous study.

[HEDS-7] 15:30-17:55

Collisionless Shock/Radiation Chair: Shuichi Matsukiyo Kvushu Universitv

2 • • • •

HEDS-7-01 15:30 Invited MAVEN observations of the Martian bow shock and foreshock

Christian X. Mazelle

IRAP CNRS - The University of Toulouse -CNES

Without global magnetic field the bow shock of Mars has a size comparable to kinetic scales and is observed well inside the neutral exosphere. We discuss recent results by MAVEN on the microphysics of the shock and the electron foreshock.

HEDS-7-02 15:55

Laboratory evidence for proton energization by collisionless shock surfing

Weipeng Yao^{1,2}, A. Fazzini¹, S. N. Chen³, K. Burdonov^{1,2}, P. Antici⁴, J. Béard⁵, S. Bolaños¹, A. Ciardi², R. Diab¹,

S. Bolarilos, A. Cultu, N. Diab, E. D. Filippov⁶⁷, S. Kisyov³, V. Lelasseux¹, M. Miceli⁸, Q. Moreno^{6,10}, V. Nastasa³, S. Orlando⁸, S. Pikuz^{6,11}, D. C. Popescu³, G. Revet, X. Ribeyre⁹, E. d'Humières⁹, J. Fuchs¹

¹LULI - CNRS, CEA, UPMC Univ Paris 06 : Sorbonne Université, Ecole Polytechnique, Institut Polytechnique de Paris -, ²Sorbonne Université, Observatoire de Paris, Université PSL, CNRS, LERMA, ³ELI-NP, IFIN-IHI, ⁴INRS-EMT, ⁵LNCMI, UPR 3228, CNRS-UGA-UPS-INSA, ⁶JIHT, RAS, ⁷IAP, RAS, ⁸INAF—Osservatorio Astronomico di Palermo, ⁹University of Bordeaux, Centre Lasers Intenses et Applications, CNRS, CEA, UMR, ¹⁰ELI-Beamlines, Institute of Physics, Czech Academy of Sciences, ¹¹NRNU MEPhI

Academy of Sciences, "NRNU MEPhI Collisionless shocks are held responsible for the production of non-thermal particles. Coupling high-powerful lasers with high-strength magnetic fields, we have investigated the generation of magnetized collisionless shock and the associated particle energization [1]. We have characterized the plasma density, temperature, as well as the EM fields and particle energization in the experiments and modeled the shock formation with both MHD and PIC simulation.

HEDS-7-03 16:20

Relativistic beam formation and magnetisation driven by the propagation of a gamma-ray beam in a pair plasma

Bertrand Martinez, Thomas Grismayer, Luís Oliveira Silva

GoLP, Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Universidade de Lisboa

Compton scattering of gamma rays in a pair plasma can drive the formation of a relativistic electron positron beam. This process is scrutinised theoretically and numerically via particle-in-cell simulations. The beam can prompt a beam-plasma instability and convert its kinetic energy into magnetic energy. We argue that this fundamental problem is relevant to study the energy dissipation of gamma-rays at the photosphere radius of a Gamma-Ray Burst.

HEDS-7-04 16:35

High-field QED experiments with high-power lasers: current status and next steps Gianluca Sarri Sarri

Invited

Invited

The Queen's University of Belfast An overview of the current efforts in high-field QED experiments will be given [1,2], together with an outlook for the next few years [3,4]. [1] K. Poder et al., Phys. Rev. X (2018) [2] J. Cole et al., Phys. Rev. X (2018) [3] E-320 experiment at FACET-II (SLAC) [4] arXiv:1909.00860 (2019)

HEDS-7-05 17:00

Theoretical studies on a radiating electron in high-intensity laser pulse Keita Seto

ELI-NP/IFIN-HH

Invited

A theoretical model is discussed of polarization-dependent nonlinear Compton scattering with locally constant field approximation. The information of a polarization mode of an emitted photon provides a finer resolution of the collision process. Then we will discuss the conceptual design of its experiment at the ELI-NP laser facility.

HEDS-7-06 17:25

Generation of plasmas in the extreme photoionization-dominated regime using the VULCAN laser

Raj Laxmi Singh¹, Francis Keenan¹, Matthew Charlwood¹, Cormac Hyland¹, David Bailie¹, Steven White¹, Gianluca Sarri¹, Steven Rose¹, EDWARD Hill², David Riley¹ ¹Queen's University Belfast, ²Imperial College London

We conducted an experiment on VULCAN laser to produce Ar photoionised plasma (photoionisation parameter > 50 ergcms⁻¹). We recorded spatially- and spectrallyresolved data of the photoionised Ar plasma X-ray emission. We will present the results obtained from this experiment.

HEDS-7-07 17:40

Magnetised Transport in a Laser Generated Plasma Driven by Heat Flow

Adam Devlin Dearling', Christopher Arran¹, Philip Bradford¹, George Hicks², S Al-Atabi², Luca Antonelli¹, Ollie Ettlinger², Matthew Khan¹, Kevin Gilze³, Margaret Notley³, Chris Walsh², Robert Kingham², Zulfikar Najmudin², Christopher Ridgers¹, Nigel Woolsey¹ ¹University of York, ²Imperial College London, ³STFC Central Laser Facility

A recent experiment studied hot magnetised plasma on the nanosecond timescale. Transitioning from a fluid to a kinetic-like plasma regime, we are able to assess extended magneto-hydrodynamic (MHD) models. Data suggests that extended MHD models that include the Nernst effect are necessary to describe the plasmas evolution, with kinetic modelling required for more accurate results to be obtained.

Wednesday, 21 April

[HEDS-8] 9:00-10:15 Reconnection/Turbulence Chair: Taichi Morita Kyushu University

HEDS-8-01 9:00

Invited

Nonthermal Electron and Ion Acceleration in Laser-Driven Magnetic Reconnection

Samuel Richard Totorica^{1,2,3,4}, Masahiro Hoshino⁵, Tom Abel^{6,7,2}, Frederico Fiuza¹

¹SLAC National Accelerator Laboratory, ²Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, ³Department of Astrophysical Sciences, Princeton University, ⁴International Research Collaboration Center, National Institute of Natural Sciences, ⁵Department of Earth and Planetary Science, University of Tokyo, ⁶Department of Physics, Stanford University, ⁷SLAC National Accelerator Laboratory

We present kinetic particle-in-cell simulations of laser-driven magnetic reconnection experiments at large system sizes. We analyze the nonthermal acceleration of electrons and ions and discuss the implications for space physics and atrophysics.

HEDS-8-02 9:25

Particle dynamics in collisionless magnetic reconnection

Invited

Invited

Invited

Seiji Zenitani¹, Tsugunobu Nagai², Iku Shinohara², Hiroshi Hasegawa² ¹Kobe University, ²ISAS/JAXA

Magnetic reconnection plays a key role in many plasma systems. In a collisionless plasma, the physics of magnetic reconnection is controlled by complex particle motions inside its magnetic geometry. In this talk, we will overview our recent progress in particle dynamics near the X-line of magnetic reconnection, based on two-dimensional particle-in-cell (PIC) simulations.

HEDS-8-03 9:50

Forming a long current sheet magnetic reconnection with intense lasers Jiayong Zhong

Department of Astronomy, Beijing Normal University

We report here a group of long current magnetic reconnection experiments with a millimeter plasma device.

[HEDS-9] 10:35-11:55

Reconnection/Turbulence II Chair: Taichi Morita

Kyushu University

HEDS-9-01 10:35

Study of particle energy energization from laser-driven magnetic reconnection experiment

King Fai Farley Law¹, Jinyuan Dun², Yuki Abe², Alessio Morace², Yasunobu Arikawa², Mao Takemura², Shuwang Guo², Tetsuo Ozaki³, Baojun Zhu², Phillipp Korneev⁴, Joao Jorge Santos⁵, Shinsuke Fujioka², Yutaka Ohira¹, Masahiro Hoshino¹ ¹The University of Tokyo, ²ILE, Osaka University, ³NIFS, ⁴National Research Nuclear University MEPhl, ⁵CELIA, Bordeaux

In this work, the particle acceleration via magnetic reconnection is studied by laser-produced magnetized plasma. The energization of electrons and ions are investigated in the reconnection experiment and will be reported in details.

Wednesday, 21 April

HEDS-9-02 11:00 Invited Exploring the late evolution of a Rayleigh-Taylor unstable system – an

experimental insight on turbulence -Gabriel Rigon^{1,2}, Bruno Albertazzi², Tatiana Pikuz^{3,4}, Paul Mabey², Victorien Bouffetier5, Norimasa Ozaki6,7, Tommaso Vinci², Emeric Fallize⁸, Yuichi Inubushi^{9,10}, Nobuki Kamimura⁶, Kento Katagiri⁶, Sergey Makarov^{4,1} Mario Manuel¹², Kohei Miyanishi¹⁰, Sergey Pikuz^{4,13}, Olivier Poujade⁸, Keiichi Sueda¹⁰, Tadashi Togashi^{10,9} Yuhei Umeda⁶, Makina Yabashi^{9,10} Toshinori Yabuuchi9,10, Gianluca Gregori14, Ryo Kodama⁶, Alexis Casner⁵, Michel Koenig^{2,6} ¹Graduate School of Science, Nagoya University, ²LULI, CNRS, CEA, Institut Polytechnique de Paris, 30TRI, Osaka University, ⁴JIHT RAS, ⁵Université de Bordeaux, CNRS, CEA, CELIA, Graduate School of Engineering, Osaka University, 7ILE, Osaka, ⁸CEA-DAM, DIF, ⁹Japan Synchrotron Radiation Research Institue, ¹⁰RIKKEN Spring8-Center, ¹¹Departement of Physics of accelerators and radiation medicine, ¹²General Atomics, Inertial Fusion Technologies, ¹³National Research Nuclear University MEPhI, 14 Departement of Physics, University of Oxford

In this talk we will present the results of a HED experiment performed on SACLA (Japanese X-FEL). This experiment is tailored to enable the growth of the Rayleigh-Taylor instability, until its turblent phase. Thank to the newly developed LiF based radiography, we manage to characterize this flow down to the micron scale, thus reveling unexpected features of the turbulence spectrum

HEDS-9-03 11:25

B-field Generation by the Ion-Weibel Instability in Interpenetrating Plasmas of CH. Al. and Cu

Mario J-E Manuel¹, Swarvanu Ghosh², Marissa Adams³, Raghuram Jonnalagadda², Channing Huntington⁴, Bruce Remington⁴, James Ross⁴, Dimitri Ryutov⁴,

Youichi Sakawa⁵, Hong Sio⁴, George Swadling⁴, Petros Tzeferacos³, Scott Wilks⁴, Farhat Beg², Hye-Sook Park4

General Atomics, ²University of California San Diego, ³University of Rochester, ⁴LLNL, ⁵Osaka 1 Iniversity

The ion-Weibel instability is a leading candidate mechanism for the formation of collisionless shocks observed in many astrophysical systems. Interpenetrating plasma flows drive the ion-Weibel instabilty and create B-fields that can mediate shock formation. Experimental results will be discussed that focused on studying the ion-Weibel instability under various plasma conditions through utilization of different ion species and experimental geometries.

HEDS-9-04 11:40

Magnetic field amplification by turbulent dynamo in relativistic collisionless shocks

Sara Tomita¹, Yutaka Ohira² ¹Tohoku University, ²The University of Tokyo

Recent magnetohydrodynamics simulations of relativistic shocks propagating into inhomogeneous media show that the ambient magnetic field is amplified by turbulent dynamo in the downstream region. We perform particle-in-cell simulations of relativistic collisionless shocks propagating into pair plasma with a density clump. We found that the magnetic field amplification does not work if the amplitude of the ambient density fluctuation is below a critical value.

[HEDS-10] 13:00-15:20 Turbulence Chair: Takayoshi Sano

Osaka University

HEDS-10-01 13:00 Invited Explosive phenomena on the Sun and protostars

Shinsuke Takasao

Osaka University Solar flares are a typical example of explosions driven by magnetic reconnection. Newly-born stars or protostars are also known to produce explosions similar to solar flares, but protostellar flares are much more energetic than solar flares. In this talk, we will discuss how solar and protostellar flares occur based on observations and numerical simulations

HEDS-10-02 13:25 Invited Ion versus Electron Heating in Compressively Driven Astrophysical **Gyrokinetic Turbulence**

Yohei Kawazura¹, Alexander A. Schekochihin², Michael Barnes², Jason M. TenBarge³ Yuguang Tong⁴, Kristopher G. Klein⁵, William Dorland⁶

Tohoku University, ²University of Oxford, ³Princeton University, ⁴University of California, Berkeley, ⁵University of Arizona, ⁶University of Marvland

We developed a gyrokinetic code in which turbulence is driven by a mixture of Alfvénic and compressive fluctuations. We found that the ion-to-electron heating ratio is an increasing function of the compressive-to-Alfvénic injection ratio. We also found that all the compressive injection goes to ion heating, and the partition of heating is decided at the injection scales.

HEDS-10-03 13:50 **Direct numerical simulations of MHD**

turbulence in the solar wind

Munehito Shoda National Astronomical Observatory of Japan Recent results of direct numerical simulations of the solar wind turbulence are reported. It is found that compressional MHD turbulence plays a central role in heating and accelerating the fast solar wind. A direct comparison between simulation and PSP observation is also performed, which shows

HEDS-10-04 14:15 Invited **On non-equilibrium Alfvenic** fluctuations in the solar wind

a nice similarity between the two data.

Yasuhiro Nariyuki

University of Toyama

In this talk, a stochastic phenomenological model to describe the non-equilibrium Alfvenic state is presented. It is shown that the relative speeds in the "friction" terms are necessary to incorporate the information of the parallel bulk speeds of each ion species into the model. Dependence of energy dissipation on wave-number spectra will also be discussed.

HEDS-10-05 14:40 Magnetic-geometry-induced activation of zonal flows in magnetically confined plasma turbulence

Motoki Nakata^{1,2}, Seikichi Matsuoka^{1,2}, Masanori Nunami^{1,2}, NGS team¹ ¹NIFS, ²The Graduate University for Advanced Studies

Spontaneous emergence of zonal flows in fusion plasmas is recognized as a key mechanism for improved plasma confinement. Here, we present the recent progress in theoretical and numerical studies on the magnetic-geometry-induced activation of the zonal flows. Utilizing mathematical optimization techniques with an extended turbulence model, numerical explorations of 3-D magnetic geometry found a plasma in which the transport is reduced by enhanced zonal flows.

HEDS-10-06 15:05

Interactions between non-isotropic electroconvection turbulence and mean flows

Takaki Ohguri¹, Kenichi Nagaoka^{1,2} Motoki Nakata^{2,3}, Shinii Yoshimura¹ Yoshiki Hidaka⁴, Kenichiro Terasaka⁴, Yohei Masada5

¹Nagoya University, ²NIFS, ³SOKENDAI, ⁴Kyushu University, ⁵Aichi University of Education We generated mean flows in crystal liquid and investigated interactions between the flow and electroconvection turbulence. It is found that convective turbulence might enlarges the effective viscosity on the mean flows

[HEDS-11] 15:50-17:30 Asian-Core

Chair: Youichi Sakawa Osaka University

HEDS-11-01 15:50

Invited

Laboratory astrophysics using large-scale laser systems-Formation of Weibel-instability mediated collisionless shock

Invited

Youichi Sakawa Osaka University

We investigated Weibel-instability mediated collisionless shock (Weibel shock) in a self-generated turbulent magnetic field theoretically/computationally and experimentally using large-scale laser systems, Omega laser and the National Ignition Facility (NIF).

HEDS-11-02 16:15 Invited Extreme terahertz bursts generated from relativistic laser-foil interactions

Guoqian Liao, Yutong Li, Jie Zhang Institute of Physics, CAS We report on the highly efficient generation of THz bursts from relativistic laser interactions with a metal foil. The THz spectra can be manipulated effectively by tuning the laser or target parameters. Furthermore, the THz radiation can serve as a unique laser-plasma diagnostic.

Invited HEDS-11-03 16:40

Tunable relativistic single-cycle infrared pulses generated from laser plasma interactions

. Chih-Hao Rick Pai¹, Zan Nie², Jie Zhang³, Xiaonan Ning³, Jianfei Hua³, Chaojie Zhang², Yunxiao He3, Yipeng Wu2, Qianqian Su2 Shuang Liu³, Yue Ma³, Zhi Cheng³, Wei Lu³, Hsu-Hsin Chu1, Jyhpyng Wang1 Warren B. Mori², Chan Joshi² ¹Department of Physics, National Central University, ²University of California Los Angeles, ³Department of Engineering Physics, Tsinghua University, ⁴Institute of Atomic and Molecular Sciences, Academia Sinica We have demonstrated that a photon


decelerator based on a precisely controlled laser-wakefield configuration can generate single cycle, tunable and broadband, infrared pulses in the mid-IR (5-14 µm) spectral region with relativistic intensities. Such a versatile tunable IR source may be scaled up and meet the demands of many cuttingedge applications in strong-field physics.

HEDS-11-04 17:05 Invited Relativistic plasma at a hundredth of relativistic intensity Krishnamurthy Manchikanti

TIFR, Mumbai and Hyderabad Relativistic temperature plasmas are typically with 1018 wcm-2 intensity. Do mJ lasers at 1016 wcm-2 generate a MeV electron temperature plasma? Using dynamic structures of the critical density of a liquid drop, we show imaging quality electron beams with energy upto 7 MeV. Single-shot electron radiographs with the source size <15 microns is demonstrated. Two plasmon decay instability is shown to be a key feature behind such a scheme.

[HEDS-Closing] 17:30-17:40 **Closing Remarks** Chair: Youichi Sakawa

Osaka University

Poster

HEDS-P-06

[HEDS-P] **Poster Session**

HEDS-P-01

Self Focusing and Gouy Phase Shift of Quadruple Gaussian Laser Beams in Thermal Quantum Plasma with Axial **Density Ramp**

Naveen Gupta Gupta¹, Sanjeev Kumar², S. B. Bhardwai³

¹Lovely Professional University, ²Government college for women Karnal, ³Pt. C. L. S College Karnal

This paper presents theoretical study on self-action effects of intense laser beams in-teracting with fusion plasmas. Particularly the phenomena associated with the nonlinear refraction of the laser beam have been investigated in detail.

HEDS-P-02

Screening Effect in the Magnetized Plasma and Its Impact on Weak Interactions

Yudong Luo^{1,2}, Michael A. Famiano³, Toshitaka Kajino^{2,4}, Motohiko Kusakabe⁴, A. Baha Balantekin

¹The University of Tokyo, ²National Astronomical Observatory of Japan, ³Western Michigan University, ⁴Beihang University, ⁵University of Wisconsin, Madison

Coulomb screening and its impact on weak interactions in magnetized plasma are investigated, we apply such impact in nucleosynthesis of different astrophysics site, point out screening could provide an observational signal in nucleosynthesis.

HEDS-P-04

Plasma heating via the interaction of whistler waves

Takayoshi Sano, Yusuke Tatsumi, Masayasu Hata, Yasuhiko Sentoku

Osaka University We investigate what kind of plasma heating

mechanism can work in a solar wind plasma, i.e., when whistler waves with different frequencies collide, using one-dimensional PIC simulations.

HEDS-P-05

Time-evolution of the magnetic field structure in laser-driven magnetic reconnection measured by proton radiography

Suzuto Matsuo¹, Taichi Morita¹, Takuto Kojima¹, Shogo Isayama¹, Shuichi Matsukiyo¹ Taichi Takezaki², Yasunobu Arikawa³, Youichi Sakawa³, Shunsuke Egashira³ Otono Kuramoto³, Yushiro Matsumoto³ Kentaro Sakai³, Ryo Yamazaki⁴, Kei Sugiyama⁴, Kento Aihara4

¹Kyushu University, ²University of Toyama, ³Osaka university, ⁴Aoyama Gakuin University Our research group investigated timeevolution of the magnetic field structure in laser-driven magnetic reconnection by using proton radiography. We discuss the reconnection rate from obtained images

Characterizing Weibel Instability in Counter-Propagating Plasma Flows

Swarvanu Ghosh1, Mario Manuel2, Farhat Beg1, Raghuram Jonnalagadda1 Channing Moore Huntington³

Bruce Remington³, Steven Ross³, Dmitri Dmitriyevich Ryutov³ George Forester Swadling³, Scott C Wilks³, Hye-Sook Park³, Marissa Adams⁴, Petros Tzeferacos^{4,5}, Youichi Sakawa⁶ Hona Sio⁷

¹University of California San Diego, ²General Atomics, ³LLNL, ⁴University of Rochester, ⁵Laboratory for Laser Energetics, University of Rochester, 6Osaka University, 7Massachusetts Institute of Technology

Collisionless shocks are very common in universe, occuring in astrophysical systems like supernova remnants, bow shocks. These shocks are mediated by Weibel instabilities in astrophysical environments instead of Coloumb collisions. High-power lasers have provided a unique platform to study the electromagnetic Weibel instabilities in laboratory. We have carried out laser experiments at Omega Laser Facility to generate the unmagnetized collisionless shocks.

HEDS-P-07

Study on magnetized collisionless shocks using PIC simulation and laser experiment

Shuichi Matsukiyo1,5, R. Yamazaki2,5 T. Morita¹, K. Tomita³, Y. Kuramitsu⁴, T. Sano⁵, S. J. Tanaka², T. Takezaki^{6,7}, S. Isayama¹, M Iwamoto¹, T. Nagano¹, S. Furukawa¹, H. Luo¹, T. Higuchi⁸, H. Murakami⁸, T. Horie⁸, N. Katsuki⁸, R. Hatsuyama⁸, M. Edamoto⁸, H. Nishioka⁸, M. Takagi⁸, T. Kojima⁸, S. Tomita^{9,10}, T. Oguchi⁶, N. Ishizaka², S Kakuchi², S. Sei², K. Sugiyama², K. Aihara², S. Kambayashi² ¹Faculty of Engineering Sciences, Kyushu University, ²Department of Physics and Mathematics. Aovama Gakuin University. ³Division of Quantum Science and Engineering, Hokkaido University, 4 Graduate School of Engineering, Osaka University, 5ILE, Osaka University, 6 Faculty of Engineering,

University of Toyama, 7Department of Creative Engineering, National Institute of Technology Kitakyushu College, 8Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 9Astronomical Institute, Tohoku University, 10 Frontier Research Institute for Interdisciplinary Sciences, Tohoku University We develop the method of particle-in-cell (PIC) simulation of collisionless shock formation and development to mimic an experimental situation at the institute of laser engineering, Osaka Univ., and compare the results with the experiment conducted in 2019-2020.

HEDS-P-08

Turbulent Magnetic Field Amplification Relevant to Astrophysical Scenarios due to High-power LaserPlasma Interaction

Indraj Singh, R. Uma, R. P. Sharma IIT Delhi

High-power lasers are being utilized for emulating many astrophysical scenarios in laboratory astrophysics. A theoretical model is proposed to study the turbulent magnetic field amplification, which ensues due to the high-power laser interaction with plasma.

HEDS-P-09

Simulation studies for turbulence generation and vortex formation in high beta plasma by nonlinear interaction of Extraordinary Laser and 3-D KAW

Himani Dewan, R Uma, R.P. Sharma IIT Delhi

This investigation revolve around the nonlinear interplay between pump laser and 3D-Kinetic Alfvén wave. The equations are modelled accounting ponderomotive nonlinearity due to the pump wave and are crucial in investigating the astrophysical scenarios1-3

HEDS-P-10

Investigation on ion acceleration with graphene as a nanolayer target using ELI-NP laser

Takumi Minami¹, Yu-Tzu Liao² Takamasa Hihara¹, Kentaro Sakai¹, Takahiro Nishimoto¹, Masaki Takano¹ Hiromitsu Kiriyama³, Yasunobu Arikawa⁴, Youichi Sakawa⁴, Alessio Morace⁴ Shunsuke Egashira⁴, Masato Ota⁴, Tomohiro Izumi⁴, Yoshiharu Nakagawa⁴, Takafumi Asai^{3,5}, Kouki Nishimura¹, Yoshiaki Hayashi¹, Satoshi Jinno⁶, Masato Kanasaki⁵, Yuji Fukuda³, Kazuo A Tanaka^{1,7}, Hideaki Habara¹ Wei-Yen Woon², Yasuhiro Kuramitsu ¹Guraduate school of engineering, Osaka University, ²Department of Physics, National Central University, 3KPSI, QST, 4ILE, Osaka University, 5 Graduate School of Maritime Sciences, Kobe University, ⁶Nuclear Professional School, School of Engineering, The University of Tokyo, ⁷Extreme Light Infrastructure - Nuclear Physics We are using large-area suspended graphene (LSG) targets in laser ion acceleration experiments. We show our numerical investigations with the

experimental condition at ELI-NP using particle-in-cell (PIC) simulations.