Plenary Session

Josef Pankert

General Manager Philips Photonics Philips Group Innovation

Theme:”VCSELs in every car, every home and every mobile device”

Vertical Cavity Surface Emitting Lasers (“VCSELs”) have been first demonstrated more than 40 years ago by Kenichi Iga. First commercial applications in optical data transmission were introduced more than 20 years ago, but it appears that true mass adoption of VCSELs is happening only now. The main drivers for this development are widespread use of VCSEL in optical sensors in mobile devices (proximity, auto-focus, identification) and the ever-increasing data traffic that requires optical interconnects even for consumer devices. Industrial robots and autonomous vehicles will drive another wave of optical sensors that most likely will rely on VCSELs.

The first part of talk will cover the main properties of VCSELs and its main applications. The second part will address current developments and potential new fields that VCSEL technology will conquer in the future.

Biography

Joseph Pankert is currently General Manager of Philips Photonics, a subsidiary of Royal Philips and one of the global leaders in VCSEL technology. In 1987, he received his PhD in Physics from the University of Technology in Aachen, Germany. He has ever since worked in different positions at Philips Research and Philips Lighting mainly on special light sources and lasers. Since 2008, he drives technology and business development of VCSELs and VCSEL-based solutions. Philips Photonics is currently serving sensor, datacom, industrial and automotive customers with VCSEL solutions.

Mutsuko Hatano

Tokyo Institute of Technology,
Professor, Graduate School of Engineering, Department of electrical engineering

Theme:”Diamond Electronics and Photonics: Application to Quantum Sensors”

Nitrogen-vacancy centers (NVC) in diamond have superior physical properties at room temperature for quantum sensing of magnetic field, electronic field, temperature, and pressure with scalable applications from atomic-scale to macroscopic range. Spin state (S=1) of electrons localized at the NV center can be initialized and read out optically. In conjunction with spin state manipulation using microwave radiation, optically detected magnetic resonance (ODMR) can be performed. We would like to introduce highly sensitive diamond sensors by applying advanced nano-device technologies, quantum sensing protocols and module system. For application, we will show the biological imaging, nano-scale NMR, and the device sensing. To develop the diamond quantum sensor further, advanced technologies for both photonics and electronics are needed.

Biography

Mutsuko HATANO received the Ph.D. degree from Keio University, Japan and . Full Professor, Department of Electrical and Electronic Engineering, Tokyo Institute of Technology.
She was a Chief Researcher and a head of the environment electronics project at Central Research Laboratory, Hitachi, Tokyo(1983-2010). She was a visiting researcher, University of California, Berkeley(1998-2000). In 2010, joined Tokyo Institute of Technology as a professor. She is a member, Science Council of Japan, a fellow, Japan Society of Applied Physics, a director of Academy for Co-creative Education of Environment and Energy. Research interests focus on developing carbon-based devices for sustainable energy and environmental applications: (1) wide-gap semiconductor (SiC and diamond) power electronics for smart grid society; (2) diamond quantum sensing devices for medical/life science and IoT applications; (3) artificial photosynthesis devices.

Lihong V. Wang

Bren Professor, Medical and Electrical Engineering at California Institute of Technology

Theme:”Photoacoustic Tomography: Deep Tissue Imaging by Ultrasonically Beating Optical Diffusion”

Photoacoustic tomography (PAT) has been developed for in vivo functional, metabolic, molecular, and histologic imaging by physically combining optical and ultrasonic waves. Broad applications include early-cancer detection and brain imaging. High-resolution pure optical imaging—such as confocal microscopy, two-photon microscopy, and optical coherence tomography—is limited to superficial imaging within the optical diffusion limit (~1 mm in the skin) in scattering tissue. By synergistically combining light and sound, PAT in the form of either photoacoustic computed tomography or photoacoustic microscopy provides deep penetration at high ultrasonic resolution and high optical contrast. PAT is the only modality capable of imaging across the length scales of organelles, cells, tissues, and organs (or small-animal organisms) with consistent contrast. The annual conference on PAT has become the largest in SPIE’s 20,000-attendee Photonics West since 2010. Also, wavefront engineering and compressed ultrafast photography (world’s fastest camera) will be touched upon.

Biography

Lihong Wang is Bren Professor of Medical and Electrical Engineering at California Institute of Technology. His book entitled “Biomedical Optics: Principles and Imaging” won the Goodman Book Writing Award. He has published 470 peer-reviewed journal articles and delivered 460 invited talks. His Google Scholar h-index and citations have reached 114 and 53,000, respectively. His laboratory was the first to report functional photoacoustic tomography, 3D photoacoustic microscopy, photoacoustic endoscopy, photoacoustic reporter gene imaging, the photoacoustic Doppler effect, the universal photoacoustic reconstruction algorithm, and CUP. He is the Editor-in-Chief of the Journal of Biomedical Optics. He received NIH Director’s Pioneer and NIH Director’s Transformative Research awards. He also received the OSA C.E.K. Mees Medal, IEEE Technical Achievement Award, IEEE Biomedical Engineering Award, SPIE Britton Chance Biomedical Optics Award, and Senior Prize of the International Photoacoustic and Photothermal Association. An honorary doctorate was conferred on him by Lund University, Sweden.

Wim Leemans

Director, Accelerator Technology and Applied Physics Division Director, BELLA Center Lawrence Berkeley National Laboratory

Theme:”Experiments on laser plasma accelerators with the BELLA laser and exploring the path towards future applications.”

Biography

Dr. Wim Leemans is the Director of the Accelerator Technology and Applied Physics (ATAP) Division and Director of the BELLA (Berkeley Lab Laser Accelerator) Center at LBNL. He obtained an electrical engineering (EE) degree from the “Vrije Universiteit Brussel”, Belgium in 1985, and MS and Ph.D. degrees in EE with emphasis on plasma physics, in 1987 and 1991 respectively, from UCLA. In 1991 he joined LBNL and, in 1994, started the LOASIS Program (now BELLA Center) in the Accelerator and Fusion Research (now ATAP) Division. His personal research interests are in advanced accelerators and radiation sources and application of these new concepts. He received the 1992 APS Simon Ramo award for outstanding doctoral thesis research work in plasma physics, the 1996 Klaus Halbach Award for X-ray Instrumentation, the 2005 United States Particle Accelerator School Prize for Achievement in Accelerator Physics and Technology, Outstanding Performance Award at LBNL in 2005 and 2006, the 2009 E.O. Lawrence Award from the DOE, the Advanced Accelerator Concepts Award in 2012, the 2014 DOE Secretary’s Achievement Award for the BELLA Project, the IEEE Particle Accelerator Science & Technology (PAST) Award in 2016. He is a Fellow of the APS, IEEE, and AAAS. He has been the Graduate Research Advisor of nearly twenty PhD Students and more than twenty MSc Students, several of his PhD students have won major awards including the APS best dissertation award (2005 & 2006) and a Japanese PJAS prize for best outstanding dissertation award (2007).

PAGETOP