OPTICS & PHOTONICS International Congress

22-26 April 2024

Congress Program

Plenary Session

Joint Session

Specialized International Conferences

ALPS 2024 : The 13th Advanced Lasers and Photon Sources

BFSS 2024 : Business and Finance in Sustainable Society 2024 –towards the expansion of photonics industry–

- BISC 2024 : The 10th Biomedical Imaging and Sensing Conference
- HEDS 2024 : International Conference on High Energy Density Science 2024
- ICNN 2024 : International Conference on Nano-photonics and Nano-optoelectronics 2024
- IP 2024 : Information Photonics 2024
- LDC 2024 : Laser Display and Lighting Conference 2024
- LEDIA 2024 : The 10th International Conference on Light-Emitting Devices and Their Industrial Applications
- **LSC 2024 : Conference on Laser and Synchrotron Radiation Combination Experiment 2024**
- LSSE 2024 : Laser Solutions for Space and the Earth 2024
- OMC 2024 : The 11th Optical Manipulation and Structured Materials Conference
- OPTM 2024 : Optical Technology and Measurement for Industrial Applications 2024
- OWPT 2024 : The 6th Optical Wireless and Fiber Power Transmission Conference
- SLPC 2024 : The 5th Smart Laser Processing Conference
- TILA-LIC 2024 : Tiny Integrated Laser and Laser Ignition Conference 2024
- **XOPT 2024 : International Conference on X-ray Optics and Applications 2024**

2024 | PLAN TO ATTEND

SPIE OPTICS+ PHOTONICS

18–22 August 2024 San Diego Convention Center San Diego, California USA

THE LEADING MULTIDISCIPLINARY OPTICAL SCIENCES AND TECHNOLOGY MEETING

Make plans to attend this annual event and join leading researchers and scientists as they contribute to advancements in optical engineering, nanotechnology, and organic photonics. This year enjoy a special focus on sustainability and AI/ML.

Meet face-to-face with premier researchers and discuss your product needs with top optics and photonics suppliers at the free 3-day exhibition. Industry partners will be there to help solve problems, cut costs, and increase capabilities.

Registration is open. We look forward to seeing you in San Diego.

www.spie.org/op

Table of Contents

OPTICS & PHOTONICS International Congress 2024	- 2
Welcome to OPIC 2024	- 3
OPIC 2024 Program at a Glance	- 4
Floor Plan of OPIC 2024	- 6
OPIC 2024 Congress Committees	- 9
Schedule-at-a-Glance	11
General Information	12
OPIC 2024 Sponsorship	14
OPIC 2024 Plenary Session	15
Plenary Speech16	
Conference Chairs' Welcome Letters & Committees	23
ALPS 202425	25
BFSS 202426	
BISC 202427	
HEDS 202428	
ICNN 202429	
IP 202430	
LDC 202431	
LEDIA 202432	
LSC 202433	
LSSE 202434	
OMC 202435	
OPTM 202436	
OWPT 202437	
SLPC 202438	
TILA-LIC 202439	
XOPT 202440	
OPIC 2024 Conferences Program	41
Oral Sessions	
22 April42	
23 April50	
24 April70	
25 April90	
26 April 116	
Poster Sessions 138	
What's Happening in the Exhibition Hall? 1	54
Advertiser	
SPIE. OPTICS + PHOTONICS C2	
Thorlabs Japan Inc C3	
Photonics Media C4	
Japan Laser Corp 156	

OPTICS & PHOTONICS International Congress 2024

Date: Monday 22 - Friday 26 April 2024

Organized by OPTICS & PHOTONICS International Council

Specialized International Conference Organized by

	The Laser Society of Japan
	The Optical Society of Japan
	Japan Laser Processing Society
	SPIE-The International Society for Optics and Photonics (USA)
	Institute for Nano Quantum Electronics, The University of Tokyo
	Institute of Laser Engineering, Osaka University
	The Graduate School for the Creation of New Photonics Industries
	Micro Solid-State Photonics Association
	The executive committee of Laser Solution for Space and the Earth
	Technical Committee for Ultraprecision Machining of The Japan Society for Precision
	Engineering
	RIKEN SPring-8 Center
	Research Center for Precision Engineering, Osaka University
	TechnicalCommitteeforMechano-photonics, TheJapanSocietyforPrecisionEngineering
	Study Group of Optical Wireless Power Transmission
Supported by	Ministry of Agriculture, Forestry and Fisheries
	Ministry of Economy, Trade and Industry
	Ministry of Education, Culture, Sports, Science and Technology
	Ministry of Health, Labor and Welfare
	Ministry of Land, Infrastructure, Transport and Tourism
	Japan Tourism Agency, Ministry of Land, Infrastructure, Transport and Tourism
	JST–Japan Science and Technology Agency
	Keidanren
	NEDO-New Energy and Industrial Technology Development Organization
In cooperation with	AIST–National Institute of Advanced Industrial Science and Technology
	AESJ-Atomic Energy Society of Japan
	QST-National Institutes for Quantum and Radiological Science and Technology
	RIKEN
	JSPF-The Japan Society of Plasma Science and Nuclear Fusion Research
	OITDA-Optoelectronics Industry and Technology Development Association
	OSJ–The Optical Society of Japan
	JPC–Japan Photonics Counil
	Institute for Laser Technology
	Fraunhofer Institute for Laser Technology ILT (Germany)
	OPTICA (USA)
	PIDA-Photonics Industry & Technology Development Association (Taiwan)
	Photonics Media (USA)
	SPIE-The International Society for Optics and Photonics (USA)
	The Optronics Co., Ltd.

Welcome to OPIC 2024

Fumihiko Kannari Chair OPIC 2024 Organizing Committee Professor Emeritus, Keio University

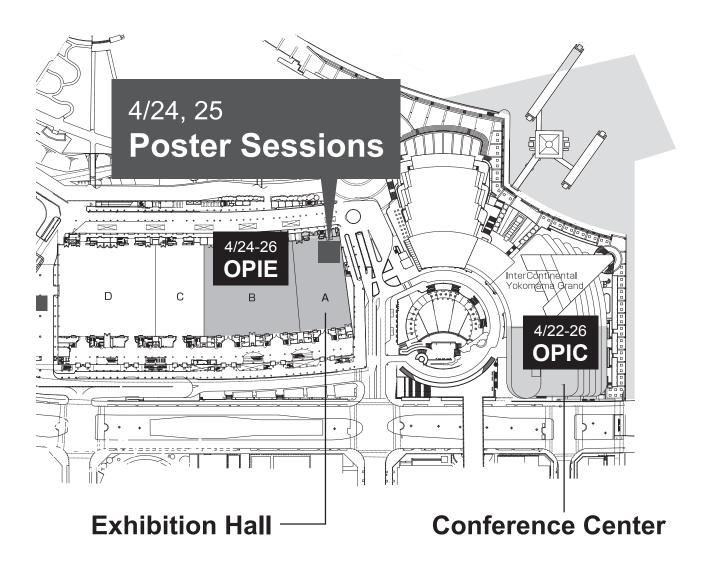
Osamu Matoba Chair OPIC 2024 Steering Committee Professor, Kobe University

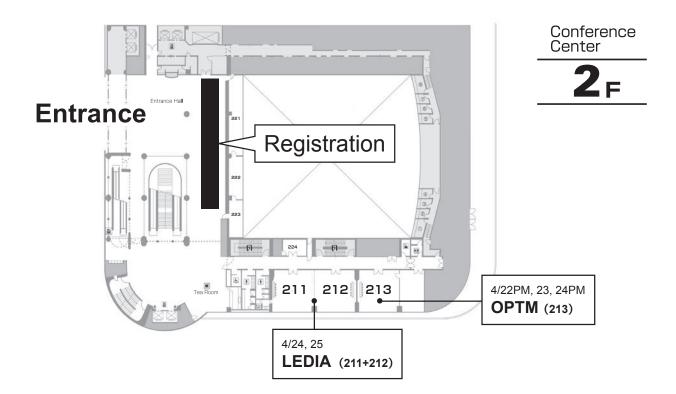
The Optics and Photonics International Council (OPI Council) has held the Optics and Photonics International Conference (OPIC) and the Optics and Photonics International Exhibition (OPIE) every year since 2012 at Pacifico Yokohama in Japan. OPIC hosts more than 10 specialized international conferences (SICs) each year, with new SICs added and the number of participants increasing each year. In the wide field of optics and photonics, it is important that various application developments are shared in one place and information is exchanged with each other, centering on common core technologies such as optical materials including nonlinear optics, laser light sources, photodetection, and optical active control. The main purpose of OPIC is to support the development of new academic and applied fields by providing an efficient platform to support the organization of meetings for the exchange of information among researchers, and promoting the development of emerging research. Since its founding in 2012, OPIC has evolved into one of the largest international technical conference events, providing an efficient opportunity for participants to interact on the latest advances in the science and technology of optics, photonics, and their applications.

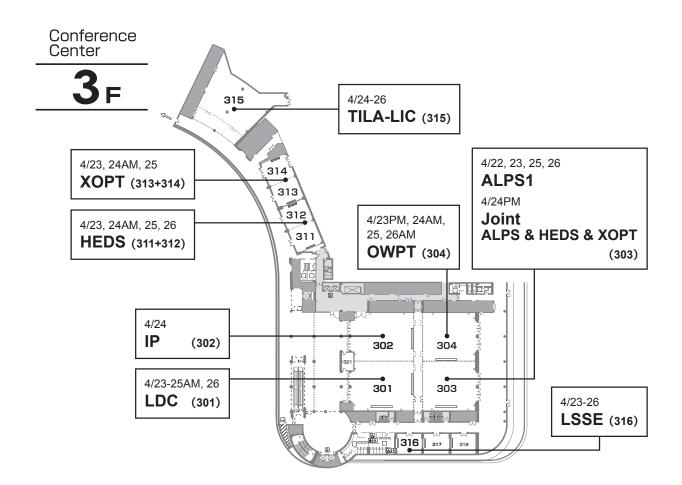
Last year, OPIC 2023, which was positioned as the resumption of full-scale face-to-face conferences after the COVID-19 pandemic, hosted 13 SICs and welcomed 1,067 participants from 49 countries. The number of papers was 733. This confirmed once again that face-to-face technical exchange is a desirable format for researchers.

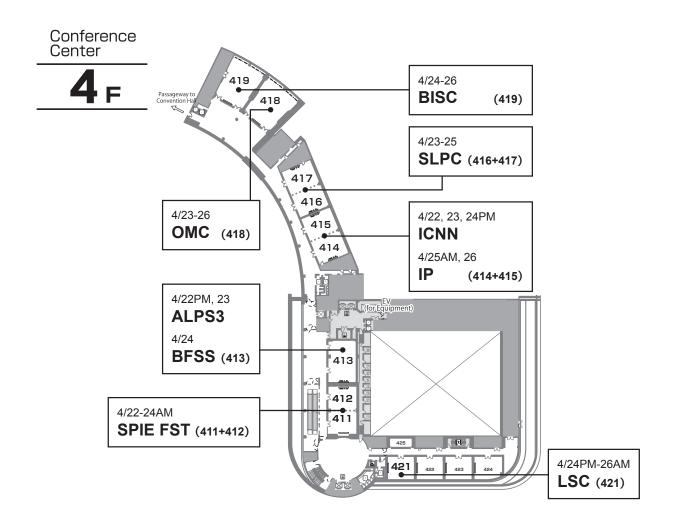
This year, OPIC 2024 consists of 16 SICs : Advanced Lasers and Photon Sources (ALPS); Business and Finance in Sustainable Society (BFSS); Biomedical Imaging and Sensing (BISC); High Energy Density Science (HEDS); Nano-photonics and Nano-optoelectronics (ICNN); Information Photonics (IP); Laser Displays and Lighting (LDC); Light-Emitting Devices and Their Industrial Applications (LEDIA); Laser and Synchrotron Combination Experiments (LSC); Laser Solutions for Space and the Earth (LSSE); Optical Manipulation and Structured Materials (OMC); Optical Technology and Measurement for Industrial Applications (OPTM); Optical Wireless and Fiber Power Transmission (OWPT); Smart Laser Processing (SLPC); Tiny Integrated Lasers and Laser Ignition (TILA-LIC); X-ray Optics and Applications (XOPT). Each technical conference has a unique program of interesting speakers, so we encourage registered attendees to attend presentations in multiple conferences. For more information, please visit each technical conference's website.

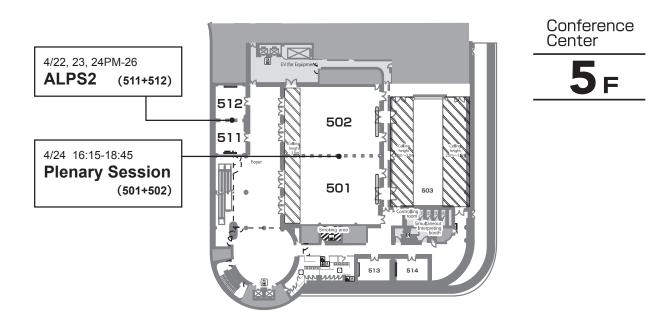
The organizers would like to thank everyone who submitted papers and the invited speakers who agreed to present their work at the meeting this year. We have made every effort to make this event beneficial to all participants, and we hope that OPIC 2024 will be fruitful and improve our shared communication.


F	Prog	jram at	a Glano	ce						*4/24: Room 302 4/25·26: Room 414+415	
Date	Room Time	HEDS Room 311+312	XOPT Room 313+314	ALPS Room 303	ALPS Room 511+512	ALPS Room 413	BFSS Room 413	BISC Room 419	ICNN Room 414+415	IP Room 302 & 414+415	
	10:00-			Opening Remarks (p.42)					Opening Remarks (p.42)		
	11:00-			ALPS1 (p.42-)		1			ICNN1 (p.42)		
	12:00-				ALPS6 (p.42-)				Lunch		
Mon 22 Apr.	13:00-			Lur	nch						
Apr.	14:00-			ALPS2 (p.44-)	ALPS7 (p.44-)	ALPS4 (p.44-)			ICNN2 (p.44-)		
	15:00-			Break	Break	Break			Break		
	16:00-			ALPS3 (p.46-)	ALPS8 (p.48)	ALPS5 (p.46-)			ICNN3 (p.46-)		
	17:30-		17:30-	19:30 Welcome	Reception < Bay	v Bridge Cafeteri	a (Conference C	enter 6th Floor)>	> (p.11)		
	9:00-	HEDS1 (p.50)	XOPT1 (p.52)	AL DOO (= 50)							
	10:00-		Break	ALPS9 (p.50)		ALPS13 (p.50-)			ICNN4 (p.51) Break		
	11:00-	HEDS2 (p.54)	XOPT2 (p.56-)	ALPS10 (p.54-)	ALPS15 (p.50-)				ICNN5 (p.55)		
Tue	12:00-		<u> </u>	Lunch	I				Lunch		
Tue 23 Apr.	13:00-										
	14:00-	HEDS3 (p.58-)	XOPT3 (p.60-)	ALPS11 (p.58-)	ALPS16 (p.58-)	ALPS14 (p.58-)			ICNN6 (p.59-)		
	15:00-		Break		AL DC17 (5 C2)				Break		
	16:00-	HEDS4 (p.62-)	XOPT4 (p.64-)	ALPS12 (p.62-)	ALPS17 (p.62-)				ICNN7 (p.63-)		
	9:00-]			Opening Remarks (p.70)			Opening Remarks (p.71)	
	10:00-	HEDS5 (p.70) Break	XOPT5 (p.73)				BFSS1 (p.70)]	IP1 (p.71)	
	11:00-	HEDS6 (p.74-)	XOPTp (p.77)	ALPSp	1 (n 74-)		Break BFSS2 (p.74)	BISC1 (p.70-) Break	ICNNp (p.75-)	Break	
	12:00-				· (p., i)		B1 002 (p.17)	BISC2 (p.74)		IP2 (p.75-)	
Wed 24 Apr.	13:00-	Lur	nch		Lunch		BFSS3 (p.78)	Lur	nch	ſ	
	14:00	HEDSp			ALPS18 (p.78-)		Break	BISC3 (p.78-)	ICNN8 (p.79-)	IP3 (p.79-)	
	15:00-	(p.79-) Joint S	Session ALPS & <room 303=""></room>		Break ALPS19 (p.82-)		BFSS4 (p.82)	Break	Closing Remarks (p.87)	Break IP4 (p.87)	
	16:15-			16	:15-18:45 Plena	ry Session <roo< th=""><th>Closing Remarks (p.86) m 501+502> (p.1</th><th>15)</th><th></th><th></th><th></th></roo<>	Closing Remarks (p.86) m 501+502> (p.1	15)			
	19:10-			19:1	0-21:10 Banque	t <ballroom (inte<="" th=""><th>erContinental)> (</th><th>p.11)</th><th></th><th></th><th></th></ballroom>	erContinental)> (p.11)			
	9:00-	HEDS7 (p.91)	XOPT6 (p.93-)	ALPS20 (p.90-)	ALPS24 (p.90)			BISC5 (p.90)		IP5 (p.90-)	
	10:00-	Break	Break	Bre	ak (proc)			Break		Break	
	11:00-	HEDS8 (p.95-)	XOPT7 (p.97-)	ALPSp	2 (p.94-)		BFSSp (p.94-)	BISC6 (p.94-)		IP6 (p.99)	
Thu 25 Apr.	12:00-		Lur	nch				Lunch		Lunch	
Apr.	13:00-		XOPT8 (p.105)	ALPS21 (p.102-)							
	14:00-	HEDS9 (p.102-)	Break	μ. τυζ-)	ALF 323 (p. 102-)			BISCp (p.102-)		IPp (p.103-)	
	15:00-	Break HEDS10	XOPT9 (p.109-)	ALPS22 (p.106-)	Break			Break			
	16:00-	(p.110-)		Break ALPS23 (p.114)	ALPS26 (p.106-)			BISC7 (p.106-)			
	17:00- 9:00-			(p. 1 + 1)							
	10:00-	HEDS11 (p.116) Break		ALPS27 (p.116-)				BISC8 (p.116)		IP7 (p.117) Break	
	11:00-	HEDS12 (p.120)		Break	ALPS30 (p.116-)			Break		IP8 (p.121-)	
	12:00-	Lunch		ALPS28 (p.120)	och			BISC9 (p.120)		, , , , , , , , , , , , , , , , , , ,	
Fri 26 Apr.	13:00-	Lunch		Lur				Lunch		Lunch	
Арг.	14:00-	HEDS13 (p.124-)		ALPS29 (p.124-)	ALPS31 (p.124-)			BISC10 (p.124-)		IP9 (p.125-)	
	15:00-	(p.124-) Break		Break Closing Remarks (p.132)				Break			
	16:00-	HEDS14 (p.132-)						BISC11 (p.132-)			
		(p.132-)									


LDC1 (p.51)				Dreels					10:00-
Break				Break OMC2 (p.55-)	OPTM4 (p.56-)		Break SLPC2 (p.56-)		11:00-
LDC2 (p.55)			LSSE2 (p.55)	OlviO2 (p.33-)	OF 11014 (p.30-)		SEF 02 (p.30-)		12:00-
Lunch				Lunch			Lunch		
			I SSE2 (n 50)						13:00-
LDC3 (p.59-)			L33L3 (p.39)	OMC3 (p.59-)	OPTM5 (p.60-)	OWPT1 (p.60-)	SLPC3 (p.60-)		14:00-
Break					Break				15:00-
LDC4 (p.63-)				OMC4 (p.63-)	OPTM6 (p.64-)	OWPT2 (p.64-)	SLPC4 (p.64-)		16:00-
				OMC5 (p 72)			SI BC5 (n 72)		9:00-
LDC5 (p.71-)	LEDIA1 (p.71)		LSSE4 (p.72)			OWPT3 (p.72-)	Break	TILA-LIC1 (p.73)	10:00-
Break	Break LEDIA2 (p.75)				OPTMp (n 76-)	Break	SI PC6 (n 77)	Break	11:00-
LDC6 (p.75-)	LEDIA-SP		LSSE5 (p.76)	OMC6 (p.76-)	Of TMp (p.70-)	OWPT4 (p.76-)		TILA-LIC2 (p.77)	
Lun					Lur	nch			12:00-
		LSC1 (n 80)			OPTM7 (p.81)			TILA-LIC3 (p.81)	13:00-
LDC7 (p.79-)	LEDIAp (p.84)	Break	LSSE6 (p.80-)	u ,	Break	OWPTp (p.81-)	SLPC7 (p.81-)	Break	14:00-
	Break	LSC2 (p.84-)	Break		OP I M8 (p.85)		SLPC8 (p.85-)	TILA-LIC4	15:00-
	LEDIA3 (p.84-)				m 501+502> (p.15	5)		(p.00)	16:15-
									19:10-
									9:00-
LDC8 (p.91-)	LEDIA4 (p.91-)	LSC3 (p.92-)	LSSE8 (p.92-)	OMC9 (p.92-)		OWPT5 (p.92-)	SLPC9 (p.93-)	TILA-LIC5 (p.93)	
Break	Break	Break	Break	Break		Break		Break	10:00-
LDC9 (p.99)	LEDIA5 (p.95-)	LSC4 (p.96-)	LSSE9 (p.100)	OMC10 (p.96-)		OWPT6 (p.100)	SLPCp (p.97-)	TILA-LIC6 (p.97-)	11:00-
		Lunch		1			Lunch		12:00-
ſ							Editori		13:00-
LDCp (p.103-)	LEDIA6 (p.103-)	LSC5 (p.103-)	LSSE10 (p.104-)	OMCp (p.104-)		OWPT7 (p.104-)	SLPC10 (p.104) Break	TILA-LICp (p.105-)	14:00-
	Break	Bre	eak			Break	SLPC11 (p.108)	Break	15:00-
	LEDIA7 (p.107)		LSSE11 (p.108-)	OMC11 (p.108-)		OWPT8 (p.108-)	SLPC12 (p.108-)	TILA-LIC7	16:00-
		LSC6 (p.107-)				· · · · ·	Closing Remarks (p.112)	(p. 109-)	17:00-
LDC11 (p.117)									9:00-
u /		LSC7 (p.117)	LSSE12 (p.117)	OMC12 (p.118)		OWPT9 (p.118-)		TILA-LIC8 (p.118-)	10:00-
Break				Break		Break		Break	
LDC13 (p.121)		LSC8 (p.121)	LSSE13 (p.121)	OMC13 (p.122)		OWPT10 (p.122)		TILA-LIC9 (n 122)	11:00-
Lunch			Lur	nch					12:00-
								Lunch	13:00-
Break			LSSE14 (p.125-)	OMC14 (p.125-)				TILA-LIC10 (p.126-)	14:00-
Break		l		Break					15:00-
LDC16 (p.133-) losing Remarks (p.137)				OMC15 (p.133-)				TILA-LIC11 (p.134)	16:00-
	LUNCH LDC3 (p.59-) Break LDC4 (p.63-) LDC5 (p.71-) Break LDC6 (p.75-) LDC7 (p.79-) LDC7 (p.79-) LDC7 (p.99) LOC-SP (p.99) LOC-SP (p.99) LOC-SP (p.99) LOC-SP (p.99) LOC-SP (p.103-) Break LDC13 (p.117) LDC12 (p.117) LDC12 (p.117) Break LDC13 (p.121) LDC13 (p.121) Break LDC15 (p.129-) Break	Lunch	Lunch Lunch Lunch LDC3 (p.59-) Break LDC4 (p.63-) LEDIA1 (p.71) Break LEDIA2 (p.75) LEDIA2 (p.75) LEDIA2 (p.75) LEDIA2 (p.75) LEDIA3 (p.84) LDC7 (p.79-) LEDIA3 (p.84) LDC7 (p.79-) LEDIA3 (p.84) LDC8 (p.91-) LEDIA3 (p.84) LDC8 (p.91-) LEDIA3 (p.84) LDC9 (p.99) LEDIA5 (p.95-) LSC4 (p.96-) Break LDC9 (p.99) LEDIA5 (p.95-) LSC4 (p.96-) Break LDC9 (p.103-) LEDIA6 (p.103-) LSC5 (p.103-) Break LDC11 (p.117) LC12 (p.117) LDC12 (p.117) Break LDC13 (p.121) Lunch LDC14 (p.125) Break LDC15 (p.129-) Break LDC15 (p.129-) Break LDC14 (p.125) Break LDC15 (p.129-) Break LDC15 (p.129-) Break LDC15 (p.129-) Break LDC14 (p.125) Break LDC15 (p.129-) Break LDC15	Lunch Lunch Lunch LDC3 (p.59-) LDC4 (p.63-) LEDIA1 (p.71) LEDIA2 (p.75-) LEDIA2 (p.75-) LEDIA2 (p.75-) LEDIA5 (p.79-) LEDIA5 (p.79-) LEDIA5 (p.80-) LEDIA5 (p.91-) LEDIA5 (LUC2 (0,30) Lunch LDC3 (0,59-) Book LDC4 (0,63-) Book LDC5 (0,71-) LEDIA1 (0,71) Book LEDIA2 (0,75) LEDIA2 (0,75) LEDIA3 (0,84-) Esosit LEDIA3 (0,84-) LEDIA3 (0,94-) LEDIA3 (0,14-) LEDIA3 (0,14-) LED	LDC2 (p.33) Lunch LDC3 (p.59) LDC4 (p.63) LDC4 (p.63) LDC4 (p.63) LDC4 (p.63) LDC5 (p.71-) LEDIA3 (p.75) LEDIA3 (LUC2 (0.53) Lunch LDC3 (0.59) LDC4 (0.63) LDC5 (0.71) LEDIA1 (0.71) LCC5 (0.71) LEDIA2 (0.75) LEDIA2 (0.75) LEDIA3 (0.77) LEDIA	Lucch (s)	LUCC (0.3) LUC3 (0.5) LUC3


							Plenary	Joint 📃 Po	oster
LDC Room 301	LEDIA Room 211+212	LSC Room 421	LSSE Room 316	OMC Room 418	OPTM Room 213	OWPT Room 304	SLPC Room 416+417	TILA-LIC Room 315	Room Time
									10:00-
									11:00-
									12:00-
									13:00-
					Opening Remarks (p.45) OPTM1 (p.45-)				14:00-
					Break				15:00-
					OPTM2 (p.47-)				16:00-
	17:30	-19:30 Welcome	e Reception <bay< td=""><td>y Bridge Cafeteri</td><td>a (Conference Ce</td><td>enter 6th Floor)></td><td>(p.11)</td><td></td><td>17:30-</td></bay<>	y Bridge Cafeteri	a (Conference Ce	enter 6th Floor)>	(p.11)		17:30-
				0101 (5 51)			Opening Remarks (p.52)		9:00-
Opening Remarks (p.51) LDC1 (p.51)			LSSE1 (p.51)	OMC1 (p.51)	OPTM3 (p.52-)		SLPC1 (p.52-)		10:00-


Floor Plan


Pacifico Yokohama

OPIC 2024 Congress Committees

Congress Chairs

Toyohiko Yatagai Utsunomiya University, Japan

Irina Sorokina Norwegian University of Science and Technology

Kishan Dholakia University of St. Andrews, UK

Din Ping Tsai *City University of Hong Kong*

Shuji Sakabe Professor Emeritus, Kyoto University, Japan

International Advisory Board

<Chair>

Yoshiaki Kato Professor Emeritus, Osaka University, Japan

<Members>

Christopher P.J. Barty Distinguished Professor of Physics and Astronomy, University of California, Irvine, USA Sergei Bulanov Leader for ERT/HiFi project, Head of Department 86, ELI Beamlines Facility, The Extreme Light Infrastructure ERIC, Czech Republic Kenichi Iga Honorary Professor/Former President, Tokyo Institute of Technology, Japan

Masanori Iye *Member of the Japan Academy, Professor Emeritus of the National Astronomical Observatory of Japan, Japan*

Organizing Committee

<**Chair> Fumihiko Kannari** Professor Emeritus, Keio University, Japan Chandrashekhar Joshi Distinguished Chancellor's Professor, University of California, Los Angels, USA Ken-ichi Kitayama Professor Emeritus, Osaka University, Japan Reiko Kuroda Designated Professor, Chubu University, Professor Emeritus, The University of Tokyo, Japan Ruxin Li Academician of the Chinese Academy of Sciences, Dean of the Shanghai Institute of Optics and Fine Mechanics, CAS, Vice President of Shanghai Tech University, China Chang Hee Nam Director, Center for Relativistic Laser Science (CoReLS), Institute for Basic Science, Korea

Science (CoReLS), Institute for Basic Science, Korea **Reinhart Poprawe** Professor Emeritus RWTH-Aachen University, CEO ETERNATECH GmbH, Germany

<Vice Chair> Takashige Omatsu Chiba University, Japan, OMC <Members>

Hitoki Yoneda The University of Electro-Communications, Japan, ALPS Rie H. Kang The Graduate School for the Creation of New Photonics Industries, Japan, BFSS **Osamu Matoba** Kobe University, Japan, BISC Yasuhiro Awatsuji Kyoto Institute of Technology, Japan, BISC **Izumi Nishidate** Tokyo University of Agriculture and Technology, Japan, BISC Ryosuke Kodama Osaka University, Japan, HEDS Takayoshi Sano Osaka University, Japan, HEDS Yasuhiko Arakawa The University of Tokyo, Japan, ICNN Yoshio Hayasaki Utsunomiya University, Japan, IP Kazuo Kuroda Professor Emeritus, The University of Tokyo, Japan, LDC Hiroshi Murata Mie University, Japan, LDC Hiroshi Amano Nagoya University, Japan, LEDIA Toshihiko Shimizu Osaka University, Japan, LSC Satoshi Wada RIKEN, Japan, LSSE Toru Yoshizawa NPO 3D Associates, Japan, OPTM

Steering Committee

<Chair> Osamu Matoba Professor, Kobe University, Japan <Vice Chair> Kazuhisa Yamamoto Professor, Osaka University, Japan <Secretary> Masaki Hisaka Osaka Electro-Communication University, Japan <Members> Hiyori Uehara National Institute for Fusion Science, Japan, ALPS Yurina Michine Institute for Laser Science, The University of Electro-Communications, Japan, ALPS **Ryohei Hanayama** The Graduate School for the Creation of New Photonics Industries, Japan, BFSS Yasuhiro Awatsuji Kyoto Institute of Technology, Japan, BISC **Izumi Nishidate** Tokyo University of Agriculture and Technology, Japan, BISC Takayoshi Sano Osaka University, Japan HEDS Satoshi Iwamoto The University of Tokyo, Japan, ICNN Wakana Kubo Tokyo University of Agriculture and Technology, Japan, ICNN

Yusuke Ogura Osaka University, Japan, IP

Yukitoshi Otani Utsunomiya University, Japan, **OPTM** Tomoyuki Miyamoto Tokyo Institute of Technology, Japan, OWPT Motoharu Matsuura The University of Electro-*Communications, Japan, OWPT* Masahiro Tsukamoto Osaka University, Japan, SLPC Takunori Taira RIKEN, Japan, TILA-LIC Tetsuya Ishikawa RIKEN, Japan, XOPT Kazuto Yamauchi Osaka University, Japan, XOPT Mitsutoshi Hatori OPI Council, President, Japan Photonics Council Nobuyuki Kondo OPI Council, Charman, Japan Laser Corporation Mitsuo Takeda OPI Council, Utsunomiya University, Japan Katsumi Midorikawa OPI Council, Director, RIKEN Center for Advanced Photonics, Japan Kenichi Ueda Professor Emeritus, The University of Electro-Communications, Japan Peter Hallett SPIE, USA

Norihiro Ohse Sony Group, Japan, LDC Muneharu Kuwata Mitsubishi Electronic, Japan, LDC Yoshio Honda Nagoya University, Japan, LEDIA Nobuhiko Sarukura Osaka University, Japan, LSC Hiroki Wadati University of Hyogo, Japan, LSC Noboru Hasegawa National Institutes for Quantum and Radiological Science and Technology, Japan, LSSE Akihiko Nishimura Japan Atomic Energy Agency, LSSE Katsuhiko Miyamoto Chiba University, Japan, OMC Yukitoshi Otani Utsunomiya University, Japan, **OPTM** Ryoichi Kuwano Hiroshima Institute of Technology, Japan, OPTM Tomoyuki Miyamoto Tokyo Institute of Technology, Japan, OWPT Motoharu Matsuura The University of Electro-*Communications, Japan, OWPT* Yuji Sato Osaka University, Japan, SLPC Yoichi Sato RIKEN SPring-8 Center, Japan, TILA-LIC Hiroyuki Takigami RIKEN SPring-8 Center, Japan, TILA-LIC Yuya Kubota RIKEN SPring-8 Center, Japan, XOPT Takato Inoue Nagoya University, Japan, XOPT

Schedule-at-a-Glance

	Monday 22 April	Tuesday 23 April	Wednesday 24 April	Thursday 25 April	Friday 26 April	
GENERAL						
Registration	8:00-16:30	8:00-16:30	8:00-16:30	8:00-16:30	8:00-14:00	
Coffee Breaks	15:00-15:30	10:30-11:00 15:00-15:30	10:30-11:00 14:45-15:15	10:30-11:00 15:00-15:30	10:30-11:00 15:00-15:30	
Receptions <*1 Conference Center 6F> <*2 InterContinental 3F>	17:30-19:30 Bay Bridge Cafeteria*1		19:10-21:10 Ballroom ^{*2}			
OPIC Technical Programing						
Technical Sessions	9:50-17:00	8:45-17:15	8:50-16:00	8:30-17:30	9:00-17:05	
Plenary Session <room 501+502=""></room>			16:15-18:45			
Joint Session ALPS & HEDS & XOPT <room 303=""></room>			14:15-15:45			
Poster Sessions <exhibition a="" hall=""></exhibition>			10:30-12:00 13:30-15:00	10:30-12:00 13:30-15:00		
OPIE AND SHOW FLOOR ACTIVITIES						
OPIE <exhibition a,b="" hall=""></exhibition>			10:00-17:00	10:00-17:00	10:00-17:00	
Poster Session Lunch <exhibition a="" hall=""></exhibition>			12:15-13:00	12:15-13:00		
Poster Session Dessert <exhibition a="" hall=""></exhibition>			14:45-15:15	14:45-15:15		

General Information

Registration

Pacifico Yokohama, Conference Center 2F Lobby

Registration Hours				
Monday, 22 April	8:00 - 16:30			
Tuesday, 23 April	8:00 - 16:30			
Wednesday, 24 April	8:00 - 16:30			
Thursday, 25 April	8:00 - 16:30			
Friday, 26 April	8:00 - 14:00			

Exhibition

Exhibition Hall A,B

OPIE '24 (Exhibition) is open to all registered attendees. Schedule plenty of time to roam the halls, visit with the hundreds of companies represented and see the latest products and technologies. For more information about what's happening on the exhibit floor, see pages 154-155.

Exhibition Hours				
Wednesday, 24 April	10:00 - 17:00			
Thursday, 25 April	10:00 - 17:00			
Friday, 26 April	10:00 - 17:00			

Conference Information Desk

The Conference Information Desk is for any information concerning the OPIC conferences. Staff will be equipped to help you understand the program book, find room locations, and accept small Lost and Found items, and will operate during registration hours.

Free High-Speed Wireless LAN (Wi-Fi) How to connect to Wi-Fi

Go to Settings > Wi-Fi on your mobile and tap join SSID: FREE-PACIFICO

Lost/Found Items

Central Disaster Control Center

Report a lost/found item to the Central Disaster Control Center. *Exhibition Hall B1F* TEL: +81-45-221-2127 (24 hours open)

Business Center

Kinko's (Business Center) *Conference Center 1F and Exhibition Hall 2F* Open Hours 9:00 - 18:00 (except 22 April) Services : Printing (Digital/Offset), Copying machines, FAX machines, Scanning TEL: +81-45-222-7025

ATM

7-Eleven (7:00 to 21:00) *Exhibition Hall 2F*With Seven Bank ATM, displaying 12 languages,
you can withdraw Japanese yen from cash cards and
credit cards issued overseas. Tax-free services are
available.
Daily YAMAZAKI (7:00 to 18:00)

Exhibition Hall 1F

With E-Net ATM, you can withdraw Japanese yen.

Foreign Exchange

There is a foreign currency exchange machine on the 2nd floor of the InterContinental Yokohama Grand.

First Aid Room

Conference Center 1F and Exhibition Hall 1F Equipment: Wheelchairs, beds, AED, stretchers Dial 119 in case of an accident or a medical emergency.

AED (Automated External Defibrillator)

An AED is used to treat ventricular fibrillation. AEDs are available in the following locations. Conference Center: In front of First Aid Room (1F) Exhibition Hall: In front of First Aid Room (1F) and at Security Office (B1F)

Coin Lockers

Conference Center	Size	Price / day
1F	Small	¥300
	Small	¥300
2F	Medium	¥400
	Large	¥600
Exhibition Hall	Size	Price / day
	Small	¥300
1F	Medium	¥400
	Large	¥500
	Extra Large	¥600
2F	Small	¥300
2Γ	Large	¥500

Smoking Areas

This is a non-smoking complex and smokers are advised to use designated smoking areas. *Convention Center 3F/5F, Annex Hall Exhibition Hall 1F*

Post Office

 Queen's Square Yokohama Post Office *Queen's Square 1F* TEL: +81-45-682-0280 Counter: 9:00 to 17:00 *Weekdays

ATM: 8:00 to 21:00 *Weekdays and Saturday 8:00 to 20:00 *Sunday

• Yokohama Central Post Office *Yokohama Station East Exit* TEL: +81-570-943-212

Counter: 0:00 to 21:00 *Weekdays

9:00 to 18:00 *Saturday, Sunday, and holiday

ATM: 7:00 to 23:00 *Weekdays and Saturday 7:00 to 21:00 *Sunday and holiday

Express Delivery Service

Available at temporary Yamato Transport "Takkyubin" Delivery Service counter and Business Center Business Center (Yamato Transport, Yu-pack and FedEx) *Exhibition Hall 2F Logistics Center* (9:00 to 18:00 Occasionally closed) Available Yamato Transport Service at Daily Daily YAMAZAKI (Exhibition Hall 1F) 7-Eleven (Exhibition Hall 2F)

Information Desk

Providing information on facilities, events, sightseeing, etc. *Conference Center 2F*

TEL: +81-45-221-2155 (9:00 to 17:00)

OPIC 2024 have received the financial support from the following organizations.

OPIC 2024 thanks the following corporate sponsors for their generous support:

<Industry Sponsors>

HOTON

<International Partner>

<Media Partner>

OPIC 2024 Plenary Session

Pacifico Yokohama Conference Center, Room 501+502 Wednesday 25 April, 16:15 - 18:45

16:15 - 17:05

Chair: Toyohiko Yatagai, Chair of OPIC 2024, Professor of Utsunomiya University, Japan

Bernard Kress, Director, XR Engineering, Google, USA

"Optics and Photonics as key enabling technologies for smart glasses"

17:05 - 17:55

Chair: Fumihiko Kannari, Chair of OPIC 2024 Organizing Committee, Professor Emeritus of Keio University, Japan

Fatima Bencheikh, Co-founder, CEO/CTO of KOALA Tech. Inc., Japan

"Organic semiconductor laser diode: challenges and perspectives"

17:55 - 18:45

Chair: Yoshiaki Kato, *Chair of OPIC 2024 International Advisory Board, Professor Emeritus of Osaka University, Japan*

Markus Roth, Co-founder, Focused Energy Inc., USA

"Proton Fast Ignition as a path to commercial fusion energy"

Plenary Session

Plenary Speech

Optics and Photonics as key enabling technologies for smart glasses

Bernard Kress, PhD Director, XR Engineering, Google, USA 2023 President of the International Society of Optics and Photonics (SPIE.org) Bernard.kress@spie.org

Abstract

Optics and Photonics have been proven to be key enabling technologies for all constituting sub-systems in next generation smart glasses, such as in display subsystem, sensor sub-system and imaging sub-system. Consumer mass adoption of AR headsets is conditioned by solving all three immersive displays comfort pillars: wearable, visual and social. To do so, new micro- and nano-fabrication challenges need to be addressed, specifically more efficient waveguide combiners and smaller display engines and coherent sensor fusion systems. Novel nanofabrication techniques are needed to improve the performance of flat optical display systems while allowing for mass production at consumer cost levels. Such novel nano-fabrication technologies push the envelope beyond what is possible today with traditional nano-imprint lithography.

Current AR market segmentation

Over the past decade, augmented reality headset products which were originally marketed for consumers such as Google Glass 1, HoloLens 1 and Magic Leap 1 only echoed with enterprise, industry and defense markets, and thus their second versions were solely optimized and dedicated to cater to these specialized fields (Google Glass enterprise, HoloLens 2 and MagicLeap 2, as well as the defense headset from Microsoft, IVAS – Integrated Visually Augmented System) for which the US Army allowed a whopping \$22B budget spend over a decade. Many start-ups which had strong VC fundings also fall short of echoing with and went belly up over the past few years (Daqri, MetaVision, ODG, ...).

Today, the advent of Artificial Intelligence (AI), especially Large Language Models (LLM) allowed for a new and unique opportunity to address smart glass consumer market. Many large companies refer to these glasses as AI Glasses. The table below reviews the current market segmentation for AR devices.

AR display systems for smart glasses

The key to low form factor and all day use smart glasses is lying in the choice of components for the display sub-assembly (DSA) and sensing sub-assembly systems

	Audio glasses	Monocular smart glasses	Binocular smart glasses	AR goggles	Optical see-through headsets	Video pass-through headsets
Weight	<30 g	<45 g	<75 g	<150 g	<400 g	<600 g
Form factor	Smart glasses	Smart glasses	Smart glasses	Goggles	OST see through	VST see through
Power	<1/2W	<1W	<1.5W	<2.5W	<6W	<8W
Immersion	Audio	<20 deg monocular	20-30 deg Binocular	30-50 deg Binocular	>50-70 deg Binocular	>90 deg FOV
Display lock	No display, Audio world lock	Body locked	World locked	World locked	Occlusions, spatial anchors	All of the above
Sensors	PV camera, Voice, IMU	+ Eye Tracking, Wink,	+ 3 DOF Head Tracking (HeT)	+ 6 DOF HeT, Gesture sensing,	+ Face tracking, spatial mapping	+ Occlusion
Apps	Audio apps	Contextual display	Flat apps	3D apps	Scene apps	Spatial Computing
Example	Ray Ban stories, Bose, Echo frames	Google Glass, Tooz smart glasses,	Vuzix Blade, Digilens Crystal 30,	nReal light, Lenovo A3 ThinkReality,	Magic Leap 2, Hololens 2,	Lynx VR, Oculus Quest Pro, Apple Vision Pro

Fig 1: Current AR headset market segmentation from audio glasses, to ambient AR smart eyewear, binocular smart glasses, to Optical See Through (OST) and Video See Through (VST) headsets.

(SSA). The DSA system is usually constituted by a light engine, located in the temple frames area, which generates the image and provides an exit pupil to the optical combiner. Fig 2 reviews the main panel architectures used today in smart glasses, ranging from LTPS LCD, LCoS (Liquid Crystal on Silicon), DLP MEMS (Digital Light Processing), microOLED (Organic LED) to the latest, and yet still in development-, microLED panels.

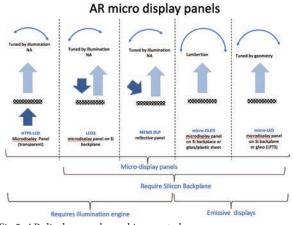


Fig.2: AR display panels used in smart glasses

The exit pupil of the light engine provides the input pupil to the combiner optics. The optical combiner overlays the digital image with the see-through field and in many cases also provides a pupil expansion. The pupil expansion can be done in many ways, but the state of the art combiner optics for smart glasses use waveguide combiners based either on bird bath architectures (such as xReal) or waveguides (HoloLens, MagicLeap). The waveguide combiners have a thinner form factor and can have holographic, diffractive or geometric reflective couplers which replicate the input pupil in a 2D array. Fig. 3 review the main architectures used today in smart glasses.

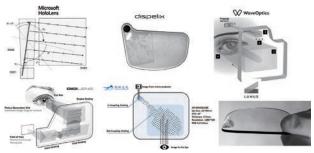


Fig. 3: Waveguide combiners used in smart glasses

Nano Imprint Lithography (NIL) is the main replication technique used for diffractive waveguides mass production. Another variety of light engines are the LBS MEMS (Laser Beam Steering) systems. They are be implemented in a variety of ways, not only providing image generation but also wobulation, field of view expansion and optical foveation. Fig. 4 review the various architectures.

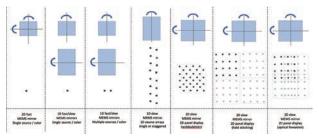


Fig. 4: LBS MEMS architectures for smart glasses

Next generation display systems

In order to reduce the form factor and free up the space in the temple regions, other display architectures are now investigated by various companies (Lusovu, New Sight Reality, Nvidia, etc...) to provide a planar display engine on the waveguide combiner, and open a new paradigm in the traditional display configuration as it was used in VR and AR systems up to now (Fig. 5).

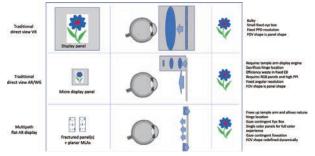


Fig. 5: Next Gen planar AR display architectures

Short Bio

Bernard published several books, is listed as the main inventor on close to 120 patents and wrote a few hundred papers covering micro-optics technologies and related product architectures.

He is the 2023 President of the International Society for Optics and Photonics (SPIE) and the chair of SPIE AR|VR|MR and DOT conferences. Bernard held engineering management positions at Google [X] Labs since 2010 (Google Glass project) and Microsoft since 2015 (HoloLens project). He is since 2022 the Director for XR Engineering at Google in Mountain View, USA.

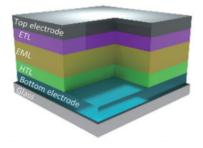
Plenary Speech

Organic semiconductor laser diode: challenges and perspectives

Fatima Bencheikh, Ph.D. Co-founder, CEO/CTO of KOALA Tech. Inc. Visiting associate professor, OPERA, Kyushu University Fatima.bencheikh@koalatech.co.jp

Abstract

Organic lasers have the potential to add value to OLED technology, expanding its applications by providing highly directional monochromatic light. In this talk, we will discuss a comprehensive investigation of the influence of exciton and photon losses on the performances of organic semiconductor laser diodes. Our findings indicate that the exciton loss affects the laser threshold while the slope efficiency remains unaffected. Conversely, photon losses affect both the lasing threshold and slope efficiency.


Content

Organic semiconductor laser diodes (OSLDs) bring together the best features of organic light-emitting diodes (OLEDs) and lasers. They can achieve highly directional, monochromatic light emission and a compact design across various wavelengths, making them a promising choice for the next generation of light sources. In 2019, a significant breakthrough showcased the lasing behavior in OSLD [1]. Subsequently, KOALA Tech has been dedicated to advancing the performance of OSLD.

OSLD consists of an OLED (Fig. 1a) with a resonator as shown in Fig. 1b. There are several types of resonators compatible with organic gain media including Fabry-Perot microcavities, distributed feedback (DFB) resonators, distributed Bragg

resonators, micro-rings, micro-discs, and microsphere cavities. DFB resonators stand out as widely employed resonators, enabling the attainment of a low lasing threshold under optical excitation.

b) OSLD

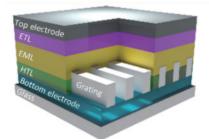


Fig. 1: Schematic representation of a) OLED and b) OSLD.

Importantly, OSLDs can be made using equipment like that used in OLED technology and be compatible with the silicon platform, potentially revolutionizing smart displays with integrated sensors and multifunctionality.

In contrast to optically pumped organic lasers where losses are minimal owing to transparent surrounding materials (substrate and cover) and the absence of charge injection, electrically driven OSLDs face additional challenges with photon and exciton losses. Consequently, it becomes imperative to significantly enhance the gain and/or reduce losses for the advancement of OSLD technology.

This talk will review the influence of various loss mechanisms on the OSLD's performances [2]. These losses fall into two categories: those associated with singlet excitons and those related to photons. Singlet exciton losses mainly arise from bimolecular interactions such as singlet-singlet annihilation, singlet-triplet annihilation, singlet-polaron annihilation, metal contact quenching, electric field-induced exciton dissociation, and Joule heating. In contrast, photon losses result from absorption by singlet excitons, triplet excitons, polarons,

Plenary

or metallic contacts. Fig. 2 shows an illustration depicting the exciton and photon losses as well as optical feedback and outcoupling in an OSLD. Photons that manage to persist through the losses are reflected back and forth by the grating within the gain medium, initiating lasing when the gain surpasses the losses.

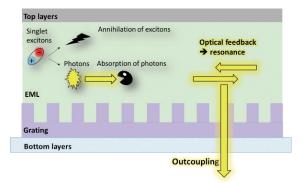


Fig. 2: Illustration depicting the exciton and photon losses as well as optical feedback and outcoupling in an OSLD.

Numerical analysis was conducted to investigate the impact of the various exciton and photon losses on the laser threshold and slope efficiency by solving the laser rate equations. Our findings indicate that the change of exciton loss rate is proportional to the laser threshold, while the slope efficiency remains unaffected. Conversely, photon losses affect both the lasing threshold and slope efficiency. The lasing threshold is proportional to the photon loss and the slope efficiency is inversely proportional to these losses.

Additionally, we explored the role of triplet excitons in TADF-based organic lasers. Our results demonstrate that increasing the rate of reverse intersystem crossing reduces triplet density, promoting laser emission through reverse intersystem crossing and boosting photon density. This process lowers the laser threshold by using triplet excitons and mitigating triplet-related losses.

Reference

- [1] Atula S. D. Sandanayaka et al., 2019, Appl. Phys. Express, 12, 061010.
- [2] Sahar Alasvand Yazdani et al., 2022 Jpn. J. Appl. Phys., 61, 074003.

Fatima Bencheikh, Ph.D., is the chief executive and technology officer of Koala Tech. Inc. and a visiting associate professor at Kyushu University. Her research interest is organic optoelectronic devices with a focus on OLED and organic semiconductor lasers. She received her Ph.D. degree in micro and nanoelectronics from Aix-Marseille University, France. Eager to discover a new way of life and new work culture, she moved to the land of the rising sun, Japan in 2016. From 2016 to 2019, she has been working as a postdoctoral fellow under the supervision of Prof. Chihaya Adachi at Kyushu University. In March 2019, Fatima Bencheikh co-founded a startup venture named KOALA Tech. Inc., an innovative high-tech startup company; whose goal is to pioneer practical applications of OSLDs that have been recently realized at Kyushu University.

Plenary Speech

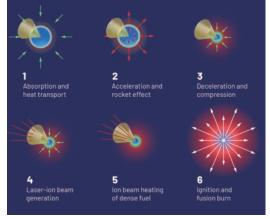
Proton Fast Ignition as a path to commercial fusion energy

Markus Roth, Ph.D. Co-founder, Focused Energy Inc. Chief Science Officer markus.roth@focused-energy.world

Abstract

The first successful ignition of a fusion reaction and the first demonstration of scientific energy gain have changed the direction of fusion research from fundamental research towards the question of how commercial energy production can be achieved. Focused Energy is a US/German startup working to commercialize fusion energy. Over the last two years we have gathered the best laser fusion scientists from both sides of the Atlantic. Upon a careful analysis of all the individual aspects of laser fusion Focused Energy has chosen the direct-drive, proton fast ignition approach as, to our belief, the most robust pathway to commercialize laser fusion energy. This talk will present our considerations, based on many decades of research around the globe, and our roadmap towards a first fusion reactor by the end of the next decade.

Content


Fusion energy, the last of all energy sources in the universe that mankind has not exploited, has the potential to solve the energy problems of mankind in the second part of the century. Despite fusion being the most difficult experiment mankind has ever made, recently the successful demonstration of ignition, burn and energy production from laser-driven inertial fusion has shown the vast potential of this energy source. But how do we get from a laser, which consumed 400 MJ of electrical energy to deliver 2MJ of laser energy, which resulted in close to 4MJ of fusion energy, to a working power plant that uses less than 20% of its own energy to run and delivers GW of electrical power to the grid?

This was the main challenge Focused Energy started to address in 2021. Focused Energy is a small startup company with headquarters in Austin, Texas, US and Darmstadt, Germany. We teamed up the best scientists in laser fusion from Europe and the US and started to investigate the individual aspects changing a fundamental experiment into a power plant design:

First, the laser system must be transformed from the unique design of the Lawrence Livermore National Laboratory (LLNL) National Ignition Facility (NIF), based on 1980's flash-lamp pumped technology to a modern, high rep-rate, diode pumped laser system with much better wall-plug efficiency.

Next, the lossy and material intense approach of indirect drive (using a Hohlraum to convert laser radiation into x-rays first) has to be replaced by the more efficient direct-drive approach. This transition requires control of laser-plasma instabilities (LPI) and the symmetry of the driving combined laser field.

One of the challenges of the common central hotspot ignition is the combined task of fuel compression and heating, leading to high laser intensities and a strong vulnerability on hydrodynamic instabilities. Thus, FE has chosen to separate the compression and heating into two steps.

Direct-Drive, Proton Fast Ignition using a cone-guided capsule

The benefit of an external driver to heat the compressed fuel is a reduction in symmetry requirements, which allows for cheaper target production and more tolerance to laser imprint. FE has therefore chosen the so-called fast ignition approach. This approach also promises

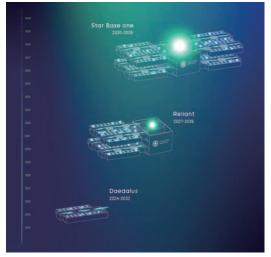
a higher burn-up rate and thus a larger energy gain.

The heating of the very dense hot spot by laser driven particle beams has been investigated over decades now. Based on more than 25 years of research FE believes a laser-driven proton beam to be the best choice for fuel ignition.

For a commercial power plant, up to a million targets have to be produced and injected into the reactor vessel. This will be possible using self-organizing production schemes currently being developed at FE.

A reactor must operate at extreme conditions and the material is exposed to high levels of radiation. A careful choice of the materials is crucial to produce energy at a cost that matches the needs of customers.

In the quest for fusion energy there are many different approaches being followed by public and private entities. The magnetic confinement fusion (MCF) approach has a few decades and much more funding as a head start compared to inertial fusion energy (IFE). However, the intrinsic benefits of laser fusion are the modularity of the approach, where individual components can be developed and tested in parallel and even exchanged in a combined system, when better solutions are available.


The biggest advantage of laser fusion is the separation of driver and reactor. Where (MCF) has one complex machine, where all components are exposed to the intense radiation, the IFE approach has its main components (the lasers) in a separate building far off the harmful reactor environment. This not only allows for manual maintenance in operation, but also opens the possibility in the choice of materials for the reactor. The reactor itself is much simpler compared to MCF, such that a lot of challenges that have plagued MCF for years simply do not matter in IFE.

Finally, the laser approach allows for a modular, step wise pathway to fusion energy. Laser systems can be added over time, increasing the performance of subscale facilities. Consequently, FE starts with a small laser system early on to address important physics questions at an early stage. A first facility is then followed by a sub-scale implosion facility where, without igniting a target, all technology components can be developed to the required technology readiness level (TRL) to be assembled in a first of a kind fusion power plant. The driving laser systems, the target technology, and the diagnostics systems can thereby be moved into the next level facility each time, saving valuable cost and time.

Focused Energy has submitted this concept and a roadmap to both the US and German government. Focused Energy has been selected in the US milestonebased program for fusion energy as one of two laser fusion companies to be funded. In Germany FE is acknowledged and funded by federal and state government to explore the pathway to fusion energy.

As a startup company, Focused Energy is closely collaborating with the science community on the university and national laboratory level and has become a strategic partner to the LLNL fusion hub IFE STARFIRE.

It is the goal of FE to combine the decades of expertise in the field with the speed of a private startup company to speed up the research onto a first laserdriven fusion power plant.

Staged approach with modular facilities, starting from a basic research facility to a sub-scale implosion facility to the first demonstration of a laser-driven power plant.

Markus Roth, Ph.D. is a professor of laser and plasma physics at the university of technology (TUDa) of Darmstadt, Germany. For more than 25 years he has been spearheading particle acceleration by ultra-intense lasers. He started working on laser fusion in 1999 as a scientist at LLNL and since worked on most of the large laser facilities around the world. He has become a fellow of the APS for his contributions to particle acceleration and laser-driven neutron sources, has been an honorary Professor at University of Kyoto (Mitsuyuki Abe chair) for a couple of years, and has been a consultant to national laboratories in the US, UK, and Europe.

NOTE

OPIC 2024

Specialized International Conferences

Conference Chairs' Welcome Letters & Committees

The 13th Advanced Lasers and Photon Sources Conference **ALPS 2024**

Sponsored by The Laser Society of Japan

Conference Co-Chair Hitoki Yoneda

Institute for Laser Science, University of Electro-Communications, Japan

Conference Co-Chair **Ruxin Li**

Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, China

We are delighted to welcome you to the 13th Advanced Lasers and Photon Sources Conference (ALPS 2024). The ALPS conference covers science and technology related to lasers and photon sources, spanning fundamental research and industrial applications. As widely recognized, the development of exceptional light sources is pivotal for advancing new scientific discoveries and applications. At the ALPS conference, participants have a valuable opportunity to exchange ideas and information concerning recent technological advancements and potential new applications. This exchange has been instrumental in maintaining the conference's appeal over the past therteen years.

The ALPS conference is organized as part of the OPTICS & PHOTONICS International Congress (OPIC 2024), which consists of thirteen optics-related scientific conferences. In the 13th ALPS we will have more than 210 excellent presentations to cover the recent advanced in this scientific field including 36 invited talks. The field included are novel optical materials, high average power lasers, high peak power lasers, novel solid-state, fiber, diode lasers, shorter wavelength light sources, terahertz devices, novel optical devices, optical frequency combs, quantum optics, and their applications.

After the relaxation of Covid-19 restrictions, we plan to organize the meeting in a face-to-face format. We anticipate fruitful discussions at the 13th ALPS meeting for all participants. You are cordially invited to join us and enjoy your time at the ALPS conference.

Conference Co-Chairs

Hitoki Yoneda The University of Electro-*Communications*, *Japan* Ruxin Li Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, China

Steering Committee

<Secretariat> Hiyori Uehara National Institute for Fusion Science, Japan Yurina Michine The University of Electro-Communications, Japan

Program Committee

<Chair> Takasumi Tanabe Keio Univ., Japan

Category A: Novel optical materials/ structure and applications

Shunsuke Kurosawa (Category Chair) Tohoku Univ., Japan Kentaro Miyata RIKEN, Japan Shohei Kodama Saitama Üniv., Japan Valentin Petrov Max Born Institute, Germany Zhanggui Hu Tianjin University of Technology, China Karol Bartosiewicz Kazimierz Wielki University, Poland

Category B: High average power lasers and applications

Hiroki Tanaka (Category Chair) Leibniz Institute for Crystal Growth, Germany Hiroaki Furuse Kitami Institute of Technology, Japan Anna Ono Ruhr-Universität Bochum, Germany Christian Kränkel Leibniz-Institut für Kristallzüchtung, Germany Yicheng Wang Ruhr-Universität Bochum,

Germany

Category C: High peak power lasers, high pulse energy lasers and applications Hiromitsu Kiriyama (Category Chair) OST, Iapan

Jumpei Ogino Osaka Univ., Japan Takaaki Morita Hamamatsu Photonics K.K., Japan

Ioan Dancus Extreme Light Infrastructure -Nuclear Physics, Romania Bixue Hou University of Michigan, USA

Zhaoyang Li Shanghai Institute of Optics and fine Mechanics (SIOM), China

Category D: Novel solid state / fiber / diode lasers and applications Shigeki Tokita (Category Chair) Kyoto

Univ., Japan Shotaro Kitajima Nagoya Univ., Japan Jeff Nicholson OFS Laboratories, USA

Xiaoyang Guo Shenzhen Technology University, China Yoonchan Jeong Seoul National University,

Korea

Category E: Short wavelength light sources and applications Takeshi Higashiguchi (Category Chair)

Utsunomiya Univ., Japan Keisuke Kaneshima University of Hyogo, Japan Kentaro Tomita Hokkaido Univ., Japan Heide Ibrahim Institut National de la Recherche Scientifique, Canada John Sheil ARCNL, Netherlands

Category F: Terahertz devices, nonlinear optics and applications Osamu Kojima (Category Chair) Chiba Institute of Technology, Japan Shinichi Watanabe Keio Univ., Japan Yu Tokizane Tokushima Univ., Japan M. Hassan Arbab Stony Brook University, USA Michele Cito NICT, Japan

Category G: Novel optical devices, metamaterials, structure and applications Takuma Aihara (Category Chair) NTT, Japan Koichi Okamoto Osaka Metropolitan Univ., Japan

Kentaro Iwami Tokyo University of Agriculture and Technology, Japan Mu Ku CHEN City University of Hong Kong, Hong Kong Yu-Jung Lu Academia Sinica, Taiwan

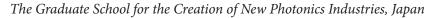
Category H: Optical devices and techniques

for bio and medical applications Masato Ohmi (Category Chair) Osaka Univ., Japan Masayuki Suzuki Doshisha Univ., Japan Yuji Matsuura Tohoku Univ., Japan Tsuneyuki (John) Ozaki Institut national de la recherche scientifique, Canada Hsiang-Chieh Lee National Taiwan University, Taiwan

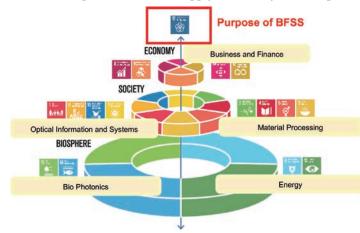
Category I: Optical frequency combs / Frequency stabilized lasers and applications Yoshiaki Nakajima (Category Chair) Toho Univ., Japan Sho Okubo AIST, Japan Takashi Kato UEC, Japan

Naoya Kuze Tokushima Univ., Japan Guanhao Wu Tsinghua Univ., China Zhang Shuangyou Max Planck Institute for the Science of Light, Germany

Category J: Quantum optics and their applications


Ryosuke Shimizu (Category Chair) UEC, Iapan

Ryo Okamoto Kyoto Univ., Japan Rikizo Ikuta Osaka Univ., Japan Rui-Bo Jin Wuhan Institute of Technology, China Bo Cao Jinan Institute of Quantum Technology, China


Business and Finance in Sustainable Society 2024 -towards the expansion of photonics industry– BFSS 2024

Sponsored & Organized by **The Graduate School for the Creation of New Photonics Industries (GPI)** In corporation with **CAPITAL MARKET & WOMEN LAB (CAPW)**

Conference Chair Rie H. Kang

The aim of the conference is to integrate "Optics & Photonics technology with business" and "Optics & Photonics technology with finance". In recent years, participants in financial capital markets have moved closer to the field of science and technology more than ever before because of the movement towards sustainable finance, including ESG and impact investment. However, universities and other research institutions with various technologies and university-launched startups and ventures have few opportunities to be aware of these financial capital markets. To accelerate the social implementation and commercialization of university seeds, contact points with private business, and especially with the financial and capital markets that supply risk money, are indispensable.

Sustainable finance points out that the three aspects of sustainable developmenteconomic, social, environmental- interact and it is important to choose the right combination. Sustainable finance can be likened to the three stages of the 'SDGs wedding cake'. As we all know, 'Optics & Photonics' technology is contributing to the resolution of issues related to society and biosphere, as indicated in this figure. It is economic activities that link technologies such as energy, biotechnology, laser processing and optical measurement to social implementation and commercialization

Figure: adaption by Kang based on "The SDGs wedding cake" from Stockholm Resilience Centre, Stockholm University (2016).

to create economic value. And it is SDGs No 17 'Partnership for the Goals' that organically links these activities. The Purpose of the BFSS is to realize this partnership.

Through this conference, we hope to explore new possibilities for 'Optics & Photonics' towards the realization of a sustainable society by bringing together researchers, practitioners and financial and capital market players for exchange of views.

Program Committee

<**Co-Chair> Rie H. Kang** *GPI* **Ryohei Hanayama** *GPI*

<Member> Yasushi Masuda GPI Nobuyuki Ogata Hosei University Junichi Hayashi Aoyama Gakuin University

Conference Committee Ryohei Hanayama GPI

The 10th Biomedical Imaging and Sensing Conference BISC 2024

Sponsored by **SPIE.**

Conference Co-Chair Osamu Matoba

Kobe University, Japan

Conference Co-Chair Yasuhiro Awatsuji

Kyoto Institute of Technology, Japan

Conference Co-Chair Yuan Luo

National Taiwan University, Taiwan

Conference Co-Chair Izumi Nishidate

Tokyo University of Agriculture and Technology, Japan

On behalf of the Organizing and Program Committees, we are delighted that the 10th Biomedical Imaging and Sensing Conference will be held as part of the OPTICS & PHOTONICS International Congress (OPIC 2024).

In biomedical optics and photonics, optical tools are used to understand and treatment of disease, from the cellular level to clinical applications. At the cellular level, high-precision laser applications allow the manipulation, operation or stimulation of cells, even in living organisms or animals by using fluorescent protein and optogenetics. Optical microscopy has been revolutionized by the development of a wide variety of fluorescent dye probes and methods to control their excitation and fluorescence behavior. Various label-free imaging techniques, such as multiphoton microscopy, second-and third-harmonic generation methods, and Raman microscopy, are spreading into many biological and clinical applications. Optical coherence tomography continues to expand its clinical and preclinical applications with higher resolution, faster speed, further miniaturization, and the creation of novel approaches that enable imaging of functional information and tissue dynamics.

Biomedical imaging and sensing are the most rapidly advancing and expanding areas in optics and photonics. Techniques developed in these areas could bring us great advances in physical, engineering and biological knowledge as well as in optics and photonics technology. The aim of this conference is to cover several aspects, from the fundamental studies at the cellular level to the clinical applications of various optical technologies.

Finally, we hope that the 10th Biomedical Imaging and Sensing Conference will contribute to the progress in this field and wish you fruitful discussions.

Conference Co-Chairs Wataru Inami Shizuoka Univ., Japan Eiji Okada Keio Univ., Japan Osamu Matoba Kobe Univ., Japan Miya Ishihara National Defense Medical Yukitoshi Otani Utsunomiya Univ., Japan Yasuhiro Awatsuji Kyoto Institute of College, Japan Yong-Keun Park KAIST, Republic of Korea Technology, Japan Ichiro Ishimaru Kagawa Univ., Japan Manabu Sato Yamagata Univ., Japan Yuan Luo National Taiwan Univ., Taiwan Hsiang-Chieh Lee National Taiwan Univ., Kung-Bin Sung National Taiwan Univ., Taiwan Izumi Nishidate Tokyo Univ. of Agriculture Taiwan Tatsuki Tahara NICT, Japan and Technology, Japan Dong Li CAS, China Enrique Tajahuerce Univ. Jaume I, Spain Xingde Li Johns Hopkins Univ., United States Yosuke Tamada Utsunomiya Univ., Japan **Program Committee** Takashi Kakue Chiba Univ., Japan Sheng-Hao Tseng National Cheng Kung Univ., Szu-Yu Chen National Central Univ., Taiwan Myung K. Kim Univ. of South Florida, United Taiwan Wonshik Choi Korea Univ., Republic of Korea Tom Vettenburg Univ. of Dundee, United States Shi-Wei Chu National Taiwan Univ., Taiwan Robert Magnusson The Univ. of Texas at Kingdom Eriko Watanabe The Univ. of Electro Katsumasa Fujita Osaka Univ., Japan Arlington, United States Yuji Matsuura Tohoku Univ., Japan Yoshio Hayasaki Utsunomiya Univ. Ctr. for Communications, Japan Optical Research & Education, Japan Kazuya Nakano Seikei Univ., Japan Peng Xia AIST, Japan Masaki Hisaka Osaka ElectroCommunication Goro Nishimura Hokkaido Univ., Japan Takeshi Yasui The Univ. of Tokushima, Japan

Yusuke Ogura Osaka Univ., Japan

Univ., Japan

International Conference on High Energy Density Science 2024 HEDS 2024

Sponsored by Institute of Laser Engineering, Osaka University

Osaka University, Japan

Conference Co-Chair Takayoshi Sano

Osaka University, Japan

We are delighted that you have joined the 12th International Conference on High Energy Density Science (HEDS) within the framework of OPTICS & PHOTONICS International Congress (OPIC).

HEDS covers the high energy density sciences with high-power lasers and their applications. The Primary topic of HEDS 2024 is "Particle Acceleration in Laboratory and Astrophysical Plasmas; Shock, Turbulence, and Magnetic Reconnection". Particle acceleration is a physical process common to both laboratory and astronomical plasmas. The origin of high-energy cosmic rays is one of the critical issues in astrophysics and has been investigated intensively using numerical simulations. Particle acceleration has also been studied experimentally using such as intense laser experiments.

HEDS 2024 invites scientists worldwide in the fields of "Particle Acceleration in Laboratory and Astrophysical Plasmas," including experimental and theoretical/numerical works.

We want to promote interdisciplinary discussions by gathering knowledge on particle acceleration physics in various fields to stimulate each other and foster friendships for future collaborations.

HEDS 2024 is co-sponsored by the Institute of Laser Engineering, Osaka University. We hope you enjoy the conference, which is held in person at Yokohama.

Conference Co-Chairs Ryosuke Kodama Osaka University, Japan Takayoshi Sano Osaka University, Japan

Program Committee

Andrea Ciardi Sorbonne University, France Youichi Sakawa Osaka University, Japan Shinsuke Takasao Osaka University, Japan

International Conference on Nano-photonics and Nano-optoelectronics 2024 ICNN 2024

Sponsored by Institute for Nano Quantum Information Electronics, The University of Tokyo

Conference Chair Yasuhiko Arakawa

The University of Tokyo

We warmly welcome you to the International Conference on Nano-photonics and Nano-optoelectronics (ICNN 2024). The development of nanoscale devices is an area of research making great strides in both academic and industrial laboratories around the world. ICNN has been organized for the purpose of bringing together likeminded researchers working in the areas of nano-photonics and nano-optoelectronics, and to provide ample opportunities for peer interaction, inspiring presentations, exciting discussions, and invigorating debates. We are pleased to organize ICNN 2024 as one of the international scientific meetings of the Optics & Photonics International Congress 2024 (OPIC 2024).

The two and a half-day program of ICNN 2024 consists of oral sessions and poster session with 3 keynote talks, 10 invited talks, oral contributed talks, and poster presentations. In ICNN 2024, recent advances in nano-photonics and nano-optoelectronics will be featured by our 13 distinguished keynote and invited scientists; Stephan Reitzenstein (Germany), Takao Aoki (Japan), Yidong Huang (China), Xu Fang (UK), Shun Fujii (Japan), Miyabi Imai-Imada (Japan), Kentaro Iwami (Japan), Yuichiro Kato (Japan), Kyoko Kitamura (Japan), Rai Kou (Japan), Yu-Jung Lu (Taiwan), Otto Muskens (UK), Winnie Ye (Canada).

As the General Chair of ICNN 2024, I would like to express my sincere gratitude to all the oral speakers and poster presenters to discuss their technical achievements. Moreover, I thank all the conference committee members for their great contribution to the success of ICNN 2024, in particular, the program committee members for their critical reviewing of submitted papers.

Secretaries:

We wish that all the participants enjoy fascinating presentations and discussion at ICNN 2024.

Organizing	Committee
------------	-----------

Chair: Yasuhiko Arakawa (The University of Tokyo) Vice-Chair: Susumu Noda (Kyoto University) Secretaries: Takashi Asano (Kyoto University) Mark Holmes (Apple Inc.) Jun Tatebayashi (Osaka University) Members: Toshihiko Baba (Yokohama National University) Yasufumi Fujiwara (Osaka University) Yoichi Kawakami (Kyoto University) Takashi Kita (Kobe University) Takashi Kita (Kobe University) Takahiro Nakamura (AIOCORE) Takuo Tanaka (RIKEN)

Program Committee

Chairs: Shinji Matsuo (NTT) Toshiharu Saiki (Keio University) Vice Chairs: Satoshi Iwamoto (The University of Tokyo) Takasumi Tanabe (Keio University)

Yasutomo Ota (Keio University) Wakana Kubo (Tokyo University of Agriculture and Technology) Members: Connie Chang-Hasnain (University of California, Berkeley) Xu Fang (Southampton University) Jonathan Finley (Technical University of Munich) Tamitake Itoh (National Institute of Advanced Industrial Science and Technology) Yuichiro Kato (RIKEN) Tomohiro Kita (Waseda University) Christian Koos (Karlsruhe Institute of Technology) Jian-Feng Li (Xiamen University) Yu-Jung Lu (Academia Sinica) Sile Nic Chormaic (Okinawa Institute of Science and Technology) Koichi Okamoto (Osaka Prefecture University) Rupert Oulton (Imperial College London) Robert E. Simpson (Singapore University of Technology and Design) Junichi Takahara (Osaka University) Takuo Tanemura (The University of Tokyo) Dries Van Thourhout (Ghent University) Din Ping Tsai (National Taiwan University) Anatoly Zayats (King's College London)

Information Photonics 2024 IP 2024

Sponsored by The Optical Society of Japan

Conference Co-Chair **Yoshio Hayasaki**

Utsunomiya University, Japan

Conference Co-Chair **Stephan Reichelt**

University of Stuttgart, Germany

Conference Co-Chair Jae-Hyeung Park

Inha University, Korea

We are delighted that Information Photonics (IP) organized by the Optical Society of Japan (OSJ) is going to hold successfully in OPIC 2024 at Yokohama. The IP meeting started at Aspen, Colorado in 1999 as the succeeding meeting of Optics in Computing (OC) organized by Optical Society of America (OSA). The subsequent IP meetings were held at Lake Tahoe, Nevada, in 2001, Washington, D.C. in 2003, and Charlotte, North Carolina in 2005. After those, the IP meeting was held at Awaji, Japan in 2008 organized by the Group of Information Photonics of OSJ, Ottawa in 2011, Warsaw in 2013, Yokohama in 2017, 2019, and 2022 as one of the conferences in OPIC, and Taipei in 2020 and 2023. Information photonics is an emerging field that includes stateof-the-art methods, devices, models, and applications related to the utilization of optics in information society. We hope that scientists, researchers, engineers, and students enjoy discussing recent developments in the field of information photonics.

Steering committee

<Chairs> Yusuke Ogura Osaka Univ., Japan Hiroyuki Suzuki Gunma Univ., Japan <Members> Naova Tate Kyushu Univ., Japan Suguru Shimomura Osaka Univ., Japan Saori Takeyama Tokyo Inst. Tech., Japan Peng Xia AIST, Japan Shuji Taue Kochi Inst. Tech., Japan Yusuke Saita Wakayama Univ., Japan International Advisory Committee <Chair> Jun Tanida Osaka Univ., Japan <Members> Toyohiko Yatagai Utsunomiya Univ., Japan Mistuo Takeda Utsunomiya Univ., Japan Kashiko Kodate Univ. of Electro-Communications, Japan Women's Univ., Iapan Nam Kim Chungbuk National Univ., Korea Ken Y. Hsu National Chiao Tung Univ., Taiwan

Malgorzata Kujawinska Warsaw Univ. of Technology, Poland

Wolfgang Osten Univ. of Stuttgart, Germany Ting-Chung Poon Virginia Tech., USA Bahram Javidi Univ. of Connecticut, USA Kelvin Wagner Univ. of Colorado, USA Nobuyuki Hashimoto Citizen, Japan Haruyoshi Toyoda Hamamatsu Photonics, Japan Takanori Nomura Wakayama Univ., Japan Masahiro Yamaguchi Tokyo Inst. Tech.,

Japan Osamu Matoba Kobe Univ., Japan Yasuhiro Awatsuji Kyoto Inst. Tech., Japan

Program committee

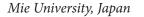
<Chairs> Yasuhiro Mizutani Osaka Univ., Japan Koichi Nitta Kobe Univ., Japan Jung-Ping Liu Feng Chia Univ., Taiwan Enrique Tajahuerce Univ. Jaume I, Spain <Members> Pascal Picart Lemans Univ., France Chau-Jern Cheng National Taiwan Normal Univ., Taiwan Ching-Cherng Sun National Central Univ., Taiwan Shiuan Huei Lin National Chiao Tung Univ., Taiwan Tomasz Kozacki Politechnika Warszawska, Poland Wojciech Krauze Warsaw Univ. of Tech., Poland Guohai Situ Shanghai Institute of Optics and Fine Mechanics, China Xiaodi Tan Fujian Normal Univ., China Liangcai Cao Tsinghua Univ., China Percival Almoro Univ. of the Philippines, Philippines Wei-Hung Su National Sun Yet-Sen Univ., Taiwan

Yuan Luo National Taiwan Univ., Taiwan

Prathan Buranasiri King Mongkut's Inst. of Tech. Ladkrabang, Thailand Pham Duc Quang Vietnam National University Hanoi, Vietnam Hee-Jin Choi Sejong Univ., Korea Hirotsugu Yamamoto Utsunomiya Univ., Japan Ayano Tanabe Citizen Ho. Co., Ltd., Japan Hiroshi Tanaka Hamamatsu Photonics, Japan Yoshinori Akao National Research Inst. of Police Science, Japan Kenji Harada Kitami Inst. of Tech., Japan Eriko Watanabe Univ. of Electro-Communications, Japan Nobukazu Yoshikawa Tottori Univ., Japan Tomoya Nakamura Osaka Univ., Japan Kazuya Nakano Seikei Univ., Japan Takashi Kakue Chiba Univ., Japan Masayuki Yokota Shimane Univ., Japan Kota Kumagai Utsunomiya Univ., Japan Takashi Nishituji Toho Univ., Japan Shuhei Yoshida Kindai Univ., Japan Teruyoshi Nobukawa Nippon Hoso Kyokai, Japan Yusuke Sando Osaka Research Institute of Industrial Science and Technology, Japan Kanami Ikeda Osaka Metropolitan Univ., Japan Yutaka Endo Kanazawa Univ., Japan Haruki Mizushina Tokushima Univ., Japan

Laser Display and Lighting Conference 2024 LDC 2024

Sponsored by The Optical Society of Japan



Honorary Chair **Kazuo Kuroda**

The University of Tokyo, Japan

Conference Co-Chair Hiroshi Murata

Conference Co-Chair Fergal Shevlin

DYOPTYKA, Ireland

Welcome to the 13th Laser Display and Lighting Conference, LDC 2024!

LDC is an international conference on laser displays, laser lighting, and related technologies. The 1st LDC was held in Yokohama, Japan in 2012. After that, LDCs were held in Yokohama, Japan (2013, 2015, 2017~2019), in Taichung, Taiwan (2014), and in Jena, Germany (2016). The 9th and 10th LDC were intended to be held in Yokohama, Japan, but switched to be on-line conferences owing to the COVID-19 situation. The 11th LDC was held as a hybrid on-line and in-person conference in 2022. The 12th LDC was held in Yokohama in-person. Then, LDC 2024 is also being held as an in-person conference in Yokohama from 23rd to 26th April 2024. LDC 2024 is sponsored by the Optical Society of Japan, in cooperation with several academic societies and associations, and is operated by the Laser Display Research Group, the Optical Society of Japan.

LDC 2024 is intended to provide a central forum for the update and review of scientific and technical information on laser display and lighting covering a wide range of fields from fundamental research to systems and applications.

A total of 40 papers will be presented during the 4-day conference, consisting of 2 keynote talks, 22 invited papers, and 16 contributed papers. Several papers will be also presented as posters. It is notable that number of submissions is almost the same with before and during the COVID-19 pandemic, which is due to the kind interest and great support from the LDC community to recover from the difficult situation caused by COVID-19. A few post-deadline papers may be accepted.

In LDC 2024, a special session focusing on advanced XR and Metaverse technologies will be held on the 24th, where we will have stimulating invited talks from expert speakers. An exciting special session entitled 'Laser Applications for Moving Platforms' will also be held with a number of distinguished speakers on 26th April. In these special sessions, state-of-the-art visible laser technology for XR, Metaverse and moving target applications, will be presented, and discussed. After all the technical sessions, a ceremony for the LDC Best Paper Award and the LDC Student Award will be held for exceptional papers commended for their outstanding achievement.

We would like to extend our sincere thanks to all the presenters and participants of LDC 2024 for their contribution to the success of the conference. We also express our sincere thanks to the Takano-Eiichi Hikari-Kagaku-Kikin (Optical Science Foundation), the Japanese Society of Applied Physics, for the financial support. We hope that all the attendees enjoy the conference.

HONORARY CHAIR

Kazuo Kuroda Utsunomiya Univ.

CONFERENCE CHAIR

<Co-Chairs> Hiroshi Murata Mie Univ. Fergal Shevlin DYOPTYKA

STEERING COMMITTEE

<Co-Chairs> Kazuhisa Yamamoto Osaka Univ. Norihiro Ohse Sony Group Corp. <Members> Makio Kurashige Dai Nippon Printing Atsushi Motogaito Mie Univ. Fumio Narusawa HIOKI E.E. Corp. Keizo Ochi Consortium of Visible Laser Diode Applications Kayo Ogawa Japan Women's Univ. Shouichi Ozawa Nikka Joho Shinji Saito Toshiba Corp. Ishiro Sato Bosch Corp. Tsutomu Shimura Univ. of Tokyo Naoto Jikutani Ricoh Industrial Solutions Takunori Taira National Inst. of Natural Science Masashi Wada Gooch & Housego Japan

PROGRAM COMMITTEE

<Co-Chairs> Sunao Kurimura National Inst. for *Materials Science* Tetsuya Yagi Nichia Corp. Shining Zhu Nanjing Univ. <Vice Co-Chairs> Hirotsugu Yamamoto Utsunomiya University Kenji Yamamoto Tokushima Univ. Tatsushi Hamaguchi Mie Univ.. Muneharu Kuwata Mitsubishi Electric Corp. <Members> Abdelmalek Hanafi BMW, Forschungsund Innovationszentrum Atsushi Satou Iwasaki Electric Eiji Hase Tokushima University Frank Fischer BST Hidekazu Hatanaka Ushio Junichi Kinoshita Osaka Univ. Katsuyuki Kambe Solidray Lung-Han Peng National Taiwan Univ.

Masafumi Ide Lamda Works Masaru Kuramoto Stanley Electronics Masato Ishino Osaka Univ. Osamu Matoba Kobe University Ray-Hua Horng National Yang Ming Chiao Tung University Satoshi Ouchi Hitachi Corp. Seika Tokumitsu Oxide Shining Zhu Nanjing University Tetsuo Shimizu Epson Takaaki Ishigure Keio Univ. Tomoyuki Miyamoto Tokyo Inst. Tech. Yasuaki Kumamoto Osaka University Young-Joo Kim Yonsei University

ADVISORY MEMBERS

Ray-Hua Horng National Chung Hsing Univ. Yasuhiro Koike Keio Univ. Shigeo Kubota Oxide Corp. Takashige Omatsu Chiba Univ. Brian Schowengerdt Univ. of Washington Hiroaki Sugiura Mitsubishi Electric Corp. Toshiaki Suhara Osaka Univ. Andreas Tünnermann Fraunhofer Institute, IOF

The 10th International Conference on Light-Emitting Devices and Their Industrial Applications LEDIA 2024

Conference Chair Hiroshi Amano

Nagoya University, Japan

Welcome to the 10th International Conference on Light-Emitting Devices and Their Industrial Applications (LEDIA 2024), which is one of the specialized international conferences in OPTICS and PHOTONICS International Congress 2024 (OPIC 2024).

Since 2013, LEDIA has been designed to provide a platform for active scientists and engineers to present and discuss progress and future trends in science and technology challenges of growths, fabrications, and characterizations of light emitting diodes/laser diodes, and their industrial applications. The scope of LEDIA 2024 covers the following topical fields; 1. Light-Emitting Diodes, 2. Laser Diodes, 3. Photodetectors and Solar Cells, 4. Epitaxial Growths, 5. Extended Wavelength Devices, 6. Novel Fabrication Processes, 7. Novel Characterization Methods, 8. Novel Materials and Devices, and 9. Industrial Application. Attendances will be able to receive a lot of information through discussions with speakers including invited ones. We also would like to emphasize that another aspect of LEDIA is to encourage students and young researchers to attend the conference, and to inspire their creativity through the discussions. We hope that all the attendees will enjoy the conference and will be satisfied with the discussions in LEDIA 2024.

CONFERENCE CHAIR

Hiroshi Amano Nagoya Univ., Japan

CONFERENCE VICE CHAIR

Tohru Honda Kogakuin Univ., Japan

STEERING COMMITTEE

<Chair> Narihito Okada Yamaguchi Univ., Japan <Vice chairs Gen-ichi Hatakoshi Waseda Univ., Japan Yoshihiro Kangawa Kyushu Univ., Japan Ryuji Katayama Osaka Univ., Japan

LOCAL STEERING COMMITTEE

<Chair> Hisashi Murakami Tokyo Univ. Agri. & Tech., Japan <Members> Yoshio Honda Nagoya Univ., Japan Narihito Okada Yamaguchi Univ. Tomoyuki Tanikawa Osaka Univ., Japan **Tomohiro Yamaguchi** Kogakuin Univ., Japan

GENERAL AFFAIRS COMMITTEE Tomoyuki Tanikawa Osaka Univ., Japan

FINANCIAL COMMITTEE

Tomoyuki Tanikawa Osaka Univ., Japan

PROGRAM COMMITTEE

<Chair> Narihito Okada Yamaguchi Univ., Japan <Vice chair Yoshio Honda Nagoya Univ., Japan <Members> Tsutom Araki Ritsumeikan Univ., Japan Jaehee Cho Chonbuk National Univ. Gen-ichi Hatakoshi Waseda Univ., Japan Young-Joo Kim Yonsei Univ., Korea Takeo Kageyama Lumentum, USA Yoshihiro Kangawa Kyushu Univ., Japan

Yoshinao Kumagai Tokyo Univ. Agri. ఈ Tech., Japan

Hisashi Murakami Tokyo Univ. Agri. & Tech., Japan Tetsuya Takeuchi Meijo Univ., Japan Tomoyuki Tanikawa Osaka Univ.,

Japan **Rie Togashi** Sophia Univ., Japan

Jonathan Wierer NC State Univ. USA Tomohiro Yamaguchi Kogakuin Univ., Japan

ADVISORY MEMBERS

Michał Boćkowski Institute of High Pressure Physics, PAS, Poland Detlef Hommel PORT Polish Center for Technology Development / Univ. Wrocław, Poland Bo Monemar Linköping Univ. / Lund Univ., Sweden Akihiko Yoshikawa Chiba Univ., Japan

Conference on Laser and Synchrotron Radiation Combination Experiment 2024 LSC 2024

Sponsored by Institute of Laser Engineering, Osaka University

Conference Chair Toshihiko Shimizu

Institute of Laser Engineering, Osaka University, Japan

We are pleased to welcome you to the Conference on Laser and Synchrotron Radiation Combination Experiment (LSC) 2024.

As part of the OPTICS & PHOTONICS International Congress (OPIC), LSC aims to converge all scientists and engineers who are working on laser and synchrotron experiments all over the world.

The conference features invited talks and presentations on the recent developments, activities, and trends in lasers and synchrotron sources, instrumentation, experimental techniques, and applications. Especially we will focus on the rapid development of new experimental techniques such as ultrashort pulse lasers and X-ray free electron lasers, which made the study of sub-picosecond dynamics more accessible. A breakthrough, which has not been possible just by studying static properties of materials, is expected to occur by studying sub-picosecond dynamics. Given the current state of this research field, cooperation between laser and synchrotron is getting more and more important. In recent years, interdisciplinary research, in which lasers and synchrotron radiation are applied to fields with which they have had little involvement, has become possible, and we expect that more and more researchers will participate in this area in the future, expanding the community.

We are very pleased that the conference has become a hybrid online event, attracting a larger and more diverse audience. We hope that you will find all the LSC and OPIC activities interesting, engaging, and beneficial. We are very grateful for your participation, and we hope you will have great time at the conference.

Conference Chair Toshihiko SHIMIZU University of Osaka, Japan STEERING Committee <Co-Chairs> Hiroki WADATI University of Hyogo, Japan Hiroshi WATANABE University of Osaka, Japan

Laser Solutions for Space and the Earth 2024 LSSE 2024

Sponsored by **The Executive Committee of Laser Solutions for Space and the Earth**

Conference Chair Satoshi Wada

RIKEN Center for Advanced Photonics, Photonics Control Technology Team, Team Leader

The aim of "Laser Solutions for Space and the Earth (LSSE)" is to discuss the application of emerging laser and optical technologies to solve various problems for sustainable developments of space and the earth.

The featured topics in LSSE 2024 are "Carbon Neutral", "Agri-Photonics", "Space Technology", "Remote Sensing", "Infrastructures" and "Industrial Application". We have one keynote lecture, many invited and oral presentations.

LSSE 2024 will be held at Pacifico Yokohama Japan and on-line.

LSSE 2024 is collaborated with OPIC 2024 (Optics & Photonics international Congress 2024). OPIC is the largest conference in OPTICS and PHOTONICS in Japan with more than 10 conferences in addition to LSSE. You can also participate in OPIC 2024 by participating in LSSE 2024.

We are looking forward to seeing you all in Yokohama!

Conference Chair Satoshi Wada RIKEN, Japan

International Advisory Board

Prof. R. Li Shanghai Institute of Optics and Fine Mechanics, China Prof. G. Mourou Ecole Polytechnique/ IZEST, France Prof. T. Tajima UC Irvine, USA Prof. X. Yan Peking University, China

Science Organizing Committee

T. Ebisuzaki RIKEN, Japan S. Aoki Keio University, Japan T. Fukushima Orbital Lasers, Japan K. Fujii RIKEN, Japan
Le Huy Ham Hanoi National
University, Vietnam
S. Nozawa Nagoya University, Japan
H. Daido Japan Atomic Energy Agency, Japan
T. Fujii The University of Tokyo, Japan
K. Fujita The Graduate School for the Creation of New Photonics Industries, Japan
N. Hasegawa National Institutes for Quantum Science and Technology, Japan
Y. Kitazawa JAXA, IHI, Japan
A. Nishimura Japan Atomic Energy Agency, Japan

H. Lu Peking University, China T. Ogawa RIKEN, Japan M. Otagiri RIKEN, Japan C. Phippes Photonics Associates, USA M. Quin Ecole Polytechnique, France A. Sasoh Nagoya University, Japan S. Shibusawa Tokyo University of Agriculture and Technology, Japan K. Shigemori Osaka University, Japan A. Shinjo Keio University, Japan K. Takayama Ehime University, Japan M. Vasile University of Strathclyde, UK C. K. Yamada AOI-PARC, Japan T. Yanagisawa JAXA, Japan N. Saito RIKEN, Japan

The 11th Optical Manipulation and Structured Materials Conference OMC 2024

Sponsored by **SPIE.**

Conference Co-Chair Takashige Omatsu

Chiba University, Japan

Conference Co-Chair **Kishan Dholakia**

University of St. Andrews, UK

Conference Co-Chair Sile Nic Chormaic

Okinawa Institute of Science and Technology Graduate University, Japan

Since the first demonstration of an optical tweezer based on optical radiation forces (scattering and gradient forces) created by a tightly focused laser beam, optical tweezers have been widely investigated in a variety of research fields, including biology, physics, and chemistry. In fact, Dr. A. Ashkin was awarded Nobel Prize in Physics, for contributing to a pioneering work of optical manipulation, 2018.

Conventional optical tweezers have been mostly adopted to dielectric particles with a dimension range from hundreds of nanometers to tens of micrometers. However, they do not always enable us to efficiently trap metallic particles.

In recent years, plasmonic tweezers based on enhanced radiation forces owing to surface plasmon polaritons in metallic nanostructures have been successfully demonstrated to efficiently trap and manipulate both nanosacle-sized dielectric and metallic particles.

Also, structured lights, such as higher order Laguerre-Gaussian and Bessel beams carry orbital angular momentum, and they provide unique tweezing abilities, for instance, for inducing an orbital motion of the trapped particles without employing mechanical systems.

Since 2014, the OMC has successfully collected more than 80 participants from home and abroad, and it marked its 10th anniversary last year! The OMC 2024 conference aims to present and discuss up-to-date scientific subjects, new technologies, and applications related to the fields of optical and plasmonic tweezers, the manipulation of nanostructures, structured optical fields and their satellite topics.

We hope that this conference will also facilitate scientific and professional networking as well as scientific inspiration through discussions.

Conference Co-Chairs

Takashige Omatsu Chiba University, Japan

Kishan Dholakia The University Australia University of St. Andrews, UK Sile Nic Chormaic Okinawa Institute of Science and Technology Graduate University, Japan

Program Committee Masaaki Ashida Osaka University Satoshi Ashihara The University of Tokyo Kyoko Kitamura Kyoto Institute of Technology Ryuji Morita Hokkaido University Seigo Ohno Tohoku University Ichiro Shoji Chuo University Kyunghwan Oh Yonsei University Yasuyuki Kimura Kyusyu University Kyoko Namura Kyoto University Yung-Fu Chen National Chiao Tung University, Taiwan Yuichi Kozawa Tohoku University Yoko Miyamoto The University of Electro-Communications, Japan Hiromi Okamoto Institute for Molecular Science, Japan Yauhiro Sugawara Osaka University, Japan Xiaodi Tan Fujian Normal University, China Yasuyuki Tsuboi Osaka City University, Japan Nirmal Viswanathan University of Hyderabad, India

Optical Technology and Measurement for Industrial Applications 2024 OPTM 2024

Co-Sponsored by SPIE, Technical Committee for Mechano-Photonics, The Japan Society for Precision Engineering

Conference Co-Chair Rainer Tutsch

Technische Universität Braunschweig

Conference Co-Chair Toru Yoshizawa

Tokyo University of Agriculture and Technology, Prof. Emeritus Non-Profit Organization: 3D Associates, Director

Conference Co-Chair Yukitoshi Otani

Utsunomiya University

On May 8, 2023, the status of novel coronavirus infections was changed from category 2 to category 5. As a result, we are planning a full-fledged, in-person format meeting, to be held as we had last year.

The aim of OPTM 2024 is to provide an international opportunity for introducing up-to-date technology in the field of optical measurement and its applications for industries. At the same time, providing a networking opportunity among young researchers and students is another important role of the conference. At the same venue, other optics-related exhibitions and conferences will also be held, providing a good chance to foster interest in different technical fields. We hope your visit to the port of Yokohama will be a nice experience in your technical and research career.

Conference Co-Chairs

Rainer Tutsch TU Braunschweig, Germany Toru Yoshizawa NPO 3D Associates, Japan Yukitoshi Otani UtsunomiyaUniversity, Japan

Organizing Committee Program Committee Chair Yukitoshi Otani Utsunomiya Univ., Japan

Program Committee

Masato Aketagawa Nagaoka Univ. of Technology, Japan Prathan Buranasiri King Mongkut Institute of Technology Ladkrabang, Thailand Juergen Czarske TU Dresden, Germany Mizue Ebisawa Tokyo Metropolitan Industrial Technology Research Institute, Japan Motoharu Fujigaki Univ. of Fukui, Japan Amalia Martinez García Centro de Investigaciones en Óptica, México Sen Han Univ. of Shanghai for Science and Technology, China Hong Feng-Lei Yokohama National Univ. Japan Nathan Hagen Utsunomiya Univ., Japan Hideki Ina Kowa Optronics Co., Ltd., Japan Ichiro Ishimaru Kagawa Univ., Japan Lianhua Jin Univ. of Yamanashi, Japan Yusuke Kajihara Institute of Industrial Science, The Univ. of Tokyo, Japan Qian Kemao NTU, Singapore Daesuk Kim Chonbuk National Univ., Korea Jonathan Kofman Univ. of Waterloo, Canada Daisuke Kono Kyoto Univ., Japan Ryoichi Kuwano Hiroshima Institute of Technology, Japan Yu-Lung Lo National Cheng Kung Univ., Taiwan

Hiraku Matsukuma Tohoku Univ., Japan Kimihisa Matsumoto Toyama Prefectural Univ., Japan Masaki Michihata The Univ. of Tokyo, Japan Yasuhiro Mizutani Osaka Univ., Japan Yukitoshi Otani Utsunomiya Univ., Japan Pavel Pavlicek Institute of Physics of the Czech Academy of Science, Czech Takamasa Suzuki Niigata Univ., Japan Satoru Takahashi The Univ. of Tokyo, Japan Toshitaka Wakayama Saitama Medical Univ., Japan Wei-Chung Wang National Tsing Hua Univ., Taiwan Gao Wei Tohoku Univ., Japan Jiangtao Xi Univ. of Wollongong, Australia Hayato Yoshioka Institute of Industrial Science, The Univ. of Tokyo, Japan Song Zhang Purdue Univ., USA

Conference

The 6th Optical Wireless and Fiber Power Transmission Conference OWPT 2024

Sponsored by The Laser Society of Japan Study Group of Optical Wireless Power Transmission

Conference Chair Tomoyuki Miyamoto

> Tokyo Institute of Technology, Japan

Conference Chair Motoharu Matsuura

The University of Electro-Communications, Japan

It is our great honor to welcome you to the 6th Optical Wireless and Fiber Power Transmission Conference (OWPT 2024). OWPT 2024 will be held as an online/on-site hybrid conference. The venue will be in Yokohama, Japan.

OWPT 2024 is an international conference intended to provide a central forum for updating and reviewing scientific and technical information on optical wireless power transmission and optical fiber power transmission, covering a wide range of areas from fundamental research to systems and applications. OWPT 2024 is organized as part of the OPTICS & PHOTONICS International Congress (OPIC 2024), which consists of 16 optics and photonics related scientific conferences. OWPT 2024 is sponsored by the Optical Wireless Power Transmission Committee of the Laser Society of Japan in cooperation with the Study Group of Optical Wireless Power Transmission in Japan. OWPT 2024 consists of 1 plenary talk, 1 special talk, 8 invited talks, and more than 30 contributed papers aiming at great developments in the field covering novel materials/devices and components, systems and subsystems, applications, and related topics.

Please join the community and get the latest activities and achievements of the scope of OWPT 2024.

Organizing Committee

<Co-chairs> Tomoyuki Miyamoto Tokyo Tech Motoharu Matsuura UEC

Steering Committee <Chair> Kayo Ogawa Japan Women's Univ.

Program Committee <Co-chairs> Kensuke Ikeda CRIEPI Masakazu Arai Univ. of Miyazaki

Simon Fafard Broadcom Genichi Hatakoshi Waseda Univ. Henning Helmers Fraunhofer ISE Masaki Hirota Kyushu Univ. Nguyen Dinh Hoa Kyushu Univ. Akira Ishibashi Hokkaido Univ. Takeo Kageyama Lumentum Japan Victor Khorenko AZUR SPACE Solar Power Qinyuan Liu Tongji Univ. Makoto Miyoshi Nagoya Inst. Tech. Nobuyoshi Mori Yamashita Denso João Batista Rosolem CPQD Stephen Sweeney Univ. Glasgow Shiro Uchida Chiba Inst. Tech. Naomi Uchiyama Tohoku Univ. Carmen Vázquez Univ. Carlos III de Madrid Cheng-liang Wu MH GoPower Tomohiro Yamaguchi Kogakuin Univ. Kiyoshi Yokomori NPEO Noriyuki Yokouchi Furukawa Electric

The 5th Smart Laser Processing Conference SLPC 2024

Organized by Japan Laser Processing Society (JLPS) Joining and Welding Research Institute (JWRI) Osaka University, Japan OPI Council, Japan

Conference Chair Masahiro Tsukamoto

JWRI, Osaka University, Japan

Conference Co-Chair Andreas Ostendorf

Applied Laser Technologies, Ruhr University Bochum, Germany

On behalf of the organizing committee, it is our great pleasure to welcome you to SLPC 2024 The 5th Smart Laser Processing Conference. Since 2014, the past SLPC conferences were launched with generous supports from many scientists and engineers in the fields of laser materials processing. Except SLPC 2020 which was cancelled due to the COVID-19, SLPC conferences were the great successes with the fine scientists and engineers attending. And now, the 5th SLPC conference is held at PACIFICO Yokohama again to encourage rapid development of laser processing technologies.

SLPC 2024 deals with science and technology of smart laser materials processing including micro- and macroprocessing. SLPC 2024 aims at providing a forum for discussion of fundamental aspects of laser-matter interaction, and the state-of -the-art of smart laser materials processing, in addition to fostering next generation concepts and innovation by collaboration among participants including scientists, end users and laser manufacturers. We wish smart laser materials processing technologies would spread all over the world through this conference. SLPC 2024 is the 3-day event which consists of a plenary session, regular oral sessions, and poster session, collaborating with other 15 professional conferences in OPIC 2024 Optics & Photonics International Congress 2024. The conference site, Yokohama, is one of the famous port towns in Japan, and many technologies had been spread all in Japan through here.

We would like to express our sincere thanks to all the presenters, in particular the plenary and the invited speakers, cooperating societies, media partners, and our sponsors. We would also like to thank the chairs and the members of program committee, steering committee, international advisory committee, and the secretariat. Thank you very much for attending, and we sincerely hope you enjoy your time at the good season of fresh green leaves in Yokohama.

General Chair

Masahiro Tsukamoto JWRI, Osaka University, Japan

Co-Chair

Andeas Ostendorf *Applied Laser Technologies, Ruhr University Bochum, Germany*

International advisory committee </Members>

Christian Hagenlocher Institut für Strahlwerkzeuge (IFSW), Germany Yongfeng Lu University of Nebraska Lincoln, USA Beat Neuenschwander Bern University of Applied Sciences, Institute for Applied Laser, Photonics and Surface Technologies ALPS, Switzerland Patcharapit Promoppatum King Mongkut's University of Technology Thonburi, Thailand **Gediminas Račiukaitis** Head of Department of Laser Technologies FTMC

- Center for Physical Sciences and Technology, Lithuania **Tomokazu Sano** Osaka University, Japan

Program commitee

Technology, Japan

<Chair> Masahito Katto University of Miyazaki, Japan <
Co-Chairs> Hitoshi Nakano Kindai University, Japan Aiko Narazaki National Institute of Advanced Industrial Science and Technology (AIST), Japan <Members> Masaki Hashida Tokai University, Japan Yoshio Hayasaki Utsunomiya University, Iapan Souta Matsusaka Chiba University, Japan Godai Miyaji Tokyo University of Agriculture and Technology, Japan Mizue Mizoshiri Nagaoka University of

Yasuhiro Okamoto Okayama University, Japan

Timotius Pasang Western Michigan Universitiy, USA

Keisuke Shigemori Osaka University, Japan

Sasitorn Srisawadi National Metal and Materials Technology Center (MTEC), Thailand

Rie Tanabe Fukuoka Institute of

Technology, Japan

Miho Tsuyama Kindai University, Japan Jörg Volpp Luleå University of Technology, Department of Engineering Sciences and Mathematics, Sweden

Yorihiro Yamashita University of Fukui, Japan

Steering committee

<Chair> Yuji Sato JWRI, Osaka University, Japan <Members> Keisuke Takenaka JWRI, Osaka University, Japan Kyohei Maeda Kobe Steel, Ltd, Japan

Tiny Integrated Laser and Laser Ignition Conference 2024 TILA-LIC 2024

Sponsored by Micro Solid-State Photonics Association

Conference Chair Takunori Taira

RIKEN SPring-8 Center (RSC) / Institute for Molecular Science (IMS)

Welcome to the 10th Tiny Integrated Laser and Laser Ignition Conference 2024 (TILA-LIC 2024), which is the international forum for discussions on various aspects of the ubiquitous sources and phenomena associated with highly intense laser pulses. TILA-LIC offers to share information on sciences and technologies related to Giant Micro-photonics. "Tiny Integrated Laser (TILA)" means the compact integration of highly intense laser devices and peripheral systems that enables ubiquitous operation of extraordinarily accurate measurements and control of extreme material phases. Here, the word "laser ignition (LI)" originally means the laser induced breakdown ignition, and it also implies the induction of phenomena caused by the irradiation of high-brightness laser pulses until the TILA based material processing, laser driven particle acceleration and the other intense laser applications. Based on the recent photonic innovation called by Giant Micro-photonics, ubiquitous lasers symbolized by TILA that can be operated at everywhere and anytime by everybody can become the door to promote the world to a new generation. The conference will be held at Pacifico Yokohama, Yokohama, Japan, on April 24-26, 2024 with the sponsorship from Laser-Driven Electron-Acceleration Technology Group, RIKEN SPring-8 Center, and Division of Research Innovation and Collaboration, Institute for Molecular Science in cooperation with several academic societies and associations.

After TILA-LIC opening talks, a total of 42+ papers will be presented, consisting of one Keynote, one Tutorial, two Plenary, 12 Invited papers, and 26 Contributed papers. In addition, we organize 4 introduction talks with regarding the TILA related company activity. At the closing remarks, award ceremony will be held at which several papers will be commended for their outstanding achievement. We would like to extend our thanks to all the presenters and participants of TILA-LIC 2024 for their contribution to the success of the conference. We also express our thanks to the endorsement and sponsor groups.

Conference Chair

Prof. Takunori TAIRA *RIKEN* SPring-8 Center, Sayo-gun, Japan

Program Committee

<Chair>
Dr. Nicolaie PAVEL National Institute
for Laser, Plasma and Radiation Physics,
Magurele, Romania
<Co-Chair>
Prof. Jun HAYASHI Kyoto University,
Kyoto, Japan.
<Members>
Prof. Gerard AKA Institut de
Recherche de Chimie Paris, Paris, France
Dr. Rakesh BHANDARI Optoquest
Co.,LTD., Ageo, Japan

Dr. Maria Stefania DE VIDO Science and Technology Facilities Council, Swindon, UK Prof. Xavier MATEOS Universitat
Rovira i Virgili, Tarragona, Spain
Dr. Tohru SUZUKI National Institute
for Materials Science, Tsukuba, Japan
Prof. Eiichi TAKAHASHI Nihon
University, Chiba, Japan
Prof. Zhang ZHGANG Peking
University, Beijng, China
Prof. Takeshi SAITO Meisei University,
Hino, Japan
Prof. Ryo YASUHARA National
Institute for Fusion Science, Toki, Japan

Steering Committee

<**Chair> Dr. Yoichi SATO** *RIKEN SPring-8 Center, Sayo-gun, Japan* <Members>

Dr. Hideki ISHIZUKI RIKEN SPring-8 Center, Sayo-gun, Japan Mr. Masato KAWANO Japan Fine Ceramic Association, Tokyo, Japan Dr. Kei TAKEYA Institute for Molecular Science, Okazaki, Japan Dr. Hiroyuki TAKIGAMI RIKEN SPring-8 Center, Sayo-gun, Japan Dr. Hideho ODAKA RIKEN SPring-8 Center, Sayo-gun, Japan Mr. Akihiro OSANAI RIKEN SPring-8 Center, Sayo-gun, Japan

Secretary Office

<Chief of Secretarist> Dr. Yoichi SATO RIKEN SPring-8 Center, Sayo-gun, Japan

International Conference on X-ray Optics and Applications 2024 XOPT 2024

Co-Sponsored by RIKEN SPring-8 Center Research Center for Precision Engineering, Osaka University Technical Committee for Ultraprecision Machining of JSPE

Conference Co-Chair **Tetsuya Ishikawa** *RIKEN, Japan*

Conference Co-Chair Kazuto Yamauchi

Osaka University, Japan

We are pleased to host the International Conference on X-ray Optics and Applications (XOPT 2024) as part of the Optics and Photonics International Congress 2024 (OPIC 2024).

X-rays have played a vital role in many breakthrough scientific discoveries in recent years. Continuous innovations in X-ray optics, methodologies, and beamline instruments have laid the foundation for these achievements. For this conference, we are inviting leading experts in these fields worldwide to share the latest status of X-ray technology and developments and discuss their plans for the future. One important topic we would like to discuss is how state-of-the-art X-ray optics can explore the potential of emerging DLSR (Diffraction-Limited Synchrotron Radiation) sources.

For details, please visit the XOPT website (https://xopt.opicon.jp/).

We are happy to welcome you to participate in and enjoy the conference.

Conference Co-Chairs Tetsuya Ishikawa *RIKEN, Japan* Kazuto Yamauchi Osaka University, Japan

Program Committee

<Chair> Makina Yabashi RIKEN, Japan <Members> Aymeric Robert MAX IV, Sweden Harald Sinn European XFEL, Germany Diling Zhu SLAC, USA

Steering Committee

<Chair> Takato Inoue Nagoya University, Japan <Members> Ichiro Inoue RIKEN, Japan Takashi Kimura The University of Tokyo, Japan Yuya Kubota RIKEN, Japan Satoshi Matsuyama Nagoya University, Japan Hidekazu Mimura The University of Tokyo, Japan Hiroto Motoyama The University of Tokyo, Japan Taito Osaka RIKEN, Japan Akihisa Takeuchi JASRI, Japan Jumpei Yamada Osaka University, Japan Wataru Yashiro Tohoku University, Japan Hirokatsu Yumoto JASRI, Japan

OPIC 2024 Conferences Program

Oral Sessions

	Mon, 22 April, AM	42
	Mon, 22 April, PM	44
	Tue, 23 April, AM	50
	Tue, 23 April, PM	58
	Wed, 24 April, AM	70
	Wed, 24 April, PM	78
	Thu, 25 April, AM	90
	Thu, 25 April, PM	102
	Fri, 26 April, AM	116
	Fri, 26 April, PM	124
		100
et.	or Sessions	138

Poster Sessions138

	Ovel Manadav	
	Oral, Monday,	
ALPS <room 303=""></room>	ALPS <room 511+512=""></room>	ICNN <room 414+415=""> [ICNN-OP] 9:50-10:00 Opening remarks Chair: Yasuhiko Arakawa The University of Tokyo</room>
		[ICNN1] 10:00-11:45 Keynote Chair: Shinji Matsuo <i>NTT</i>
		ICNN1-01 10:00 Keynote On-chip Perceptual Technology with New Physical Mechanisms Vidong Huang, Kaiyu Cui, Jiawei Yang, Ning Wu, Fang Liu, Xue Feng, Wei Zhang <i>Tsinghua Uhiv.</i>
[ALPS-OP] 10:30-10:45 Opening Remarks Chair: Hitoki Yoneda Institute for Laser Science, University of Electro-Communications		New physical mechanisms make possible a revolution in perceptual technology. This report shows the new on-chip perceptual technology based on spectral imaging and phonon lasing.
[ALPS1] 10:45-12:00 High peak power lasers, high pulse energy lasers and applications (1) Chair: Hiromitsu Kiriyama National Institutes for Quantum and Radiological Science and Technology		ICNN1-02 10:35 Keynote Single quantum dot devices for photonic quantum technologies: Design, Deterministic Nanofabrication, and Application Perspectives Stephan Reitzenstein Technische Universität Berlin Stephan Reitzenstein
ALPS1-01 10:45 Invited Ultra-intense and Ultra-short laser and its applications in SIOM Yuxin Leng, Yujie Peng, Yi Xu, Lianghong Yu, Hongxiang Lin, Xiaoyan Liang, Ruxin Li Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences We will report the new progress of the latest progress of the three international user platforms in the Shanghai Super-intense Ultra-fast Laser Facility and the station of the extreme light, which contain a 100PW leare author		Quantum dots (QDs) exhibit exceptional quantum optical properties, making them ideal for high-performance photonic quantum devices. This talk reviews the development quantum light sources and integrated quantum circuits based on semiconductor QDs, emphasizing deterministic nanofabrication technologies for scalable integration into photonic structures such as circular Bragg grating cavities and nanobeam cavities coupled to on-chip quantum circuits.
laser system.	[ALPS6] 11:15-12:15 Novel optical materials/structure and applications (1) Chair: Shohei Kodama Saitama Univ.	ICNN1-03 11:10 Keynote Nanofiber Cavity Quantum Electrodynamics Systems for Distributed Quantum Computing Takao Aoki Waseda University
ALPS1-02 11:15 Invited The ZEUS Scientific User Facility at the University of Michigan Igor Jovanovic, Andre Antoine, Junwoo Bae, Mario Balcazar, Franko Bayer, Milos Burger, Paul Campbell, Jason Cardarelli, Veronica Contreras, Nicholas Ernst, Rebecca Fitzgarrald, Bixue Hou, Galina Kalinchenko, Salee Klein, Karl Krushelnick, Carolyn Kuranz, Joshua Latham, William Likes, Yong Ma, Anatoly Maksimchuk, Andrew McKelvey, John Nees, Tanner Nutting, Eitzabeth Oxford, Alexander Thomas, Richard Van Camp, Lauren Weinberg, Louise Willingale, Qing Zhang University of Michigan The new dual-beamline 3 PW Zettawatt- Equivalent Ultrashort pulse laser System (ZEUS) is under commissioning. ZEUS features three target areas and recently started experimental operations as a user facility open to the international scientific community.	ALPS6-01 11:15 Invited Novel halide materials for scintillation applications Robert Kral, Katerina Krehlikova, Vojtech Vanecek, Romana Kucerkova, Valdimir Babin, Petra Zemenova, Jan Rohlicek, Martin Niki Institute of Physics, Czech Academy of Sciences Novel halide materials are a relevant material group, which have a potential to meet the recent demands for search of new scittillating materials regarding their performance e.g. light yield, energy resolution, timing, production costs, etc.	I will present our experimental research on nanofiber cavity quantum electrodynamics systems and prospects toward distributed quantum computing based on these systems.

Oral, Monday, 22 April AM

ALPS <Room 303>

ALPS1-03 11:45

Technology development for the lambda³ ultra-intense ultrashort lasers Zhaoyang Li

Shanghai Institute of Optics and Fine Mechanics

Recent progress in technology development for generating the lambda³ ultra-intense ultrashort lasers, i.e., compressing all the energy of a laser pulse into a spatiotemporal focal cube edged by the laser centre wavelength, is reported.

----- Lunch 12:00-13:45 -----

ALPS6-02 11:45

Growth and Luminescence Properties of Cs₃(Cu, Li)₂I₅ Scintillators for Neutron and Gamma-ray Dual Monitor

ALPS <Room 511+512>

Yusuke Urano^{1,2}, Shunsuke Kurosawa^{2,3,4}, Akihiro Yamaji^{2,3}, Akira Yoshikawa^{2,3}, Yuntao Wu⁵

¹Graduate School of Engineering, Tohoku University, ²Institute for Materials Research (IMR), Tohoku University, ⁹New Industry Creation Hatchery Center (NICHe), Tohoku University, ⁴Institute of Laser Engineering, Osaka University, ⁵Artificial Crystal Research Center Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS) Cs₃(Cu, Li)₂I₃ scintillation crystals were grown for neutron and gamma-ray dual monitoring in Fukushima Daiichi Nuclear Power Plant, and their luminescence and scintillation properties were evaluated.

ALPS6-03 12:00

well-separated.

Pulse-Shaped Discrimination for Organic Scintillation Crystals as Neutron Detection

Shunsuke kurosawa^{1,2}, Yusuke Urano¹, Akihiro Yamaji¹ ¹*Tohoku University,* ²*Osaka University* Pulse-shaped discrimination for the p-Terphenyl and other organic scintillators grown by the Bridgeman technique were evaluated to discriminate gamma rays and neutrons, and p-Terphenyl was found to be

----- Lunch 12:15-14:00 -----

ICNN <Room 414+415>

Oral, Monday, 22 April PM

Invited

ALPS <Room 303>

[ALPS4] 13:30-15:00

Optical devices and techniques for bio and medical applications (1) Chair: Masato Ohmi

ALPS <Room 413>

Osaka University

ALPS4-01 13:30

Long-range imaging using sweptsource OCT based on HCG-VCSEL

Hsiang-Chieh Lee1,2 ¹Graduate Institute of Photonics and Ontoelectronics National Taiwan University ²Department of Electrical Engineering, National Taiwan University

We have developed a long-range sweptsource optical coherence tomography imaging system employing an HCG-VCSEL light source. Example OCT imaging and axial length measurement of the model-eye are demonstrated at an A-scan rate of 30 kHz.

Development of a multi-view OCT

system based depth-encoded

¹Graduate Institute of Photonics and

Taipei 10617, Taiwan, ²Department of

Taipei 10617, Taiwan, 3 Department of

Electrical Engineering, National Taiwan

This study has developed a novel OCT

multiplexing in a single acquisition.

Incorporating the imaging stitching

reduce shadowing artefacts.

system allowing acquisition of multi-view dental OCT images using depth-encoded

algorithm, the aforementioned system aim to

University, Taipei, 10617 Taiwan

Optoelectronics, National Taiwan University,

Dentistry National Taiwan University Hospital

multiplexing

Hsiang-Chieh Lee^{1,3}

High peak power lasers, high pulse energy lasers and applications (2) Chair: Takaaki Morita Hamamatsu Photonics K.K.

[ALPS2] 13:45-15:15

ALPS2-01 13:45

The latest experimental results on laser-driven particle acceleration at ELI-NP

Invited

Domenico Doria ELI-NP

Experimental campaigns for the commissioning of the 10 PW target areas of ELI-NP were carried out last year. The E1 area, dedicated to experiments with short ALPS4-02 14:00 focal parabolic mirror, was commissioned by investigating proton acceleration via TNSA mechanism. Protons with energy up to 150 MeV have been attained. The E6 area. dedicated to experiments with long focal Pei-Chen Sung¹, Zi-Wen Kao¹, Fang-Ying Hua², Ting-Hao Chen¹, Heng-Yu Li¹, Chuan-Bor Chueh¹, Yin-Lin Wang², mirror, was also commissioned via LWFA of electrons and a maximum electron energy of about 4 GeV was achieved.

ALPS2-02 14:15

New Compressor Plan for 100PW Super-high and Ultra-short Lase Based on the Biggest Gratings with Size of 1620 mm×1070 mm

Yunxia Jin¹, Jianda Shao¹, Cheng Wang¹, Yuxing Han¹, Yuxin Leng¹, Ruxin Li^{1,2} ¹Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, China, ²Zhangjiang Laboratory, Shanghai, China SIOM is manufacturing the world's largest metal pulse compressed grating with LIDT over 0.3 J/cm² and size of 1620 mm×1070 mm to support 100 PW individual beam with pulse width of 15fs

ALPS4-03 14:15

Ex vivo study of photothermolysis induced by laser therapy with dynamic optical coherence tomography (OCT)

Yin-Shen Cheng¹, Tai-Ang Wang¹, Hsiang-Chieh Lee¹, Meng-Tsan Tsai^{2,3} ¹National Taiwan University, ²Chang Gung University, ³Chang Gung Memorial Hospital This study introduces dynamic algorithmbased OCT for laser therapy monitoring on ex vivo porcine liver. The result shows that dynamic image can illustrate ablated area and display the extent of photothermolysis.

[ALPS7] 14:00-15:30 Novel optical materials/structure and applications (2) Chairs: Shunsuke Kurosawa

ALPS <Room 511+512>

Tohoku University Kentaro Miyata RIKFN

ALPS7-01 14:00

SESAM mode-locked Tm,Ho:Ca(Gd,Y) AIO₄ laser at 2130 nm

Weidong Chen^{1,2}, Zhang-Lang Lin^{1,2}, Valentin Petrov¹, Uwe Griebner¹, Ge Zhang² Peixiong Zhang³, Zhen Li³, Zhenqiang Chen³, Xavier Mateos⁴, Pavel Loiko⁵

Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Str. 2a, 12489 Berlin, Germany, ²Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002 Fuzhou, China. ³Department of Optoelectronic Engineering. Jinan University, 510632 Guangzhou, China, ⁴Universitat Rovira i Virgili, URV, Física i Cristal·lografia de Materials (FiCMA)- Marcel·li Domingo 1, 43007 Tarragona, Spain, 5Centre de Recherche sur les lons. les Matériaux et la Photonique (CIMAP), UMR 6252 CEA-CNRS-ENSICAEN, Université de Caen, 6 Boulevard Maréchal Juin, 14050 Caen Cedex 4, France We demonstrate a SESAM mode-locked Tm,Ho:Ca(Gd,Y)AlO₄ laser delivering soliton pulses as short as 114 fs at 2130 nm with an average output power of 142 mW at a pulse repetition rate of ~80.5 MHz.

ALPS7-02 14:15

Layered lanthanide molybdate phosphors: Control of morphology, crystal phase, and luminescence properties

Invited

Takuya Hasegawa, Suzuka Noda, Ayahisa Okawa, Shu Yin Tohoku University

Single crystalline emissive double molybdates, $AEu(MoO_4)_2$ (A = Na, K, Rb, and Cs), which have attracted a lot of attention, were successfully synthesized by varving the molar ratio of A/Eu through a one-pot hvdrothermal route

ICNN <Room 414+415>

[ICNN2] 13:30-15:00

Session 1

Chair: Satoshi Iwamoto The University of Tokyo

ICNN2-01 13:30

Silicon-based metamaterial antennas and optical phased arrays

Invited

Invited

Winnie N. Ye1, Daniel Benedikovic1,2, Qiankun Liu¹, Shahrzad Khajavi¹ Daniele Melati⁵, Pavel Cheben³, Tom Smy¹, Ahmad Atieh⁴, Alejandro Sánchez Postigo^{1,6}, Jens Schmid³, Xiaochen Xin¹ ¹Carleton University, Ottawa, Canada, ²University of Zilina, Zilina, Slovakia, ³National Research Council Canada, Ottawa, Canada, ⁴Optiwave Systems, Inc., Ottawa, Canada. ⁵Centre for Nanoscience and Nanotechnologies, CNRS, Université Paris-Saclay, Palaiseau, France, 6 Telecommunication Research Institute, Universidad de Malaga, Malaga, Spain

Integrated silicon photonics introduces Optical Phased Arrays (OPAs), a breakthrough in free-space satellite communications and LIDAR. Overcoming limitations of conventional technologies, silicon-based OPAs offer compact, high-resolution, and energy-efficient beam steering. Recent advancements in concentric ring-organized chip-scale silicon OPAs effectively suppress sidelobes, expanding the steering range and achieving narrower beamwidths.

ICNN2-02 14:00

Development of the ultralow-loss phase change material Sb₂Se₃ for non-volatile programming of nanophotonic devices

Otto L Muskens, Daniel Lawson, Sophie Blundell, Matthew Delaney, Ioannis Zeimpekis University of Southampton

Progress will be presented in the

development and application of Sb₂Se₃ as a new phase change material for programmable nanophotonics with ultralow losses, high index and switching endurance exceeding one million write-reset cycles.

Oral, Monday, 22 April PM

OPTM <Room 213>

[OPTM-OP] 13:45-14:00

Opening Remarks Chairs: Toru Yoshizawa NPO 3D Associates Rainer Tutsch TU Braunschweig Yukitoshi Otani Utsunomiya University

[OPTM1] 14:00-15:00 Session1

Chairs: Rainer Tutsch TU Braunschweig Yukitoshi Otani Utsunomiya University

OPTM1-01 14:00 Invited

A manufacturing system of large free-form optics

Mikio Kurita^{1,2} ¹Kyoto University, ²LogistLab Inc.

I propose a new manufacturing system of large free-form optics. The system can polish and measure a mirror over 2 m with a robot arm by replacing the polishing tool and measurement probe on the arm end. The measuring method is a three-point method that provides the cross-section of the mirror without a standard and is applicable to free-form. The architecture and performance of the system will be presented in my talk.

ALPS <Room 303>

ALPS2-03 14:30

High Efficient 10 -fold Post **Compression in Solids** Shaobo FANG^{1,2}, Yuzhe LIU^{1,2}

¹Institute of Physics Chinese Academy of Sciences, ²University of Chinese Academy of Science

We demonstrated a nearly 10-fold compression in all-solid-state multi-pass cell, the output is successfully compressed down to 18.5 fs, 176 µJ at 50 kHz repetition rate, resulting 8.8 GW peak power and 88% output efficiency.

ALPS2-04 14:45

High contrast sub-10 fs pulses from cross-polarized wave generation in multiple thin BaF₂ plates

Xianzhi Wang¹, Zhaohua Wang^{1,2,3}, Jiajun Li^{1,2}, Jiawen Li^{1,2}, Zhiyi Wei^{1,2,3} ¹Beijing National Laboratory for Condensed

Matter Physics, Institute of Physics, Chinese Academy of Sciences, ²Department of Physics, University of Chinese Academy of Sciences.

³Songshan I ake Materials I aboratory High contrast broadband pulses of 110 μJ were generated by cross-polarized wave generation in multiple thin BaF₂ plates. The contrast was enhanced by 4 order of magnitude while the duration was compressed by 3.9 times.

ALPS2-05 15:00

Femtosecond laser processing of chalcogenide glass thin films Rajeev Rajendran¹, Soumya Suresh²

Arun Pappachan², Sheenu Thomas²,

Anop Kiliyanamkandy¹ ¹Department of Physics, Cochin University of Science and Technology, Cochin, India, ²International School of Photonics Cochin University of Science and Technology, Cochin, India

Traditional approaches to nanostructuring chalcogenide glass often rely on non-laser methods. This study investigates the use of femtosecond laser processing as a potentially more efficient, precise, and versatile technique for fabricating nanostructures in thin films

----- Coffee Break 15:15-15:30 -----

[ALPS3] 15:30-16:30

High peak power lasers, high pulse energy lasers and applications (3) Chair: Jumpei Ogino Osaka University

ALPS3-01 15:30

Faraday isolation and harmonic conversion (2 ω , 3 ω) on high energy kilowatt laser Bivoj

Martin Divoký¹, Jonathan Phillips² David Vojna¹, Jan Pilar¹, Ondrej Slezak¹ Martin Hanus¹, Petr Navratil¹, Ondrej Denk¹, Tomas Paliesek1, Patricie Severova1 Danielle Clarke², Martin Smrz², Thomas Butcher², Tomas Mocek ¹HiLASE Centre, Institute of Physics, Czech Academy of Sciences, ²Central Laser Facility, STFC Rutherford Appleton Laboratory

We report on large aperture Faraday isolator for kW pulsed laser with 30 dB isolation ratio, on harmonic conversion to 95 J @515 nm (950 W average power) and 50 J @ 343 nm (500 W average power) at the repetition rate of 10 Hz.

ALPS <Room 413>

ALPS <Room 511+512>

PM

Oral, Monday, 22 April

ALPS4-04 14:30

3D Visualization and Time-lapse Observation of Surgical Sutures by OCT

Fengcheng Wei Osaka University

Since there is seldomly has in-vivo researches on biomaterials for dermatology due to its difficulties, we made an approach to applied OCT to visualize 3D-images and measured time-lapse changes of surgical sutures.

ALPS4-05 14:45

Handheld Biosensor System Based on a Gradient Guided-Mode Resonance Device

Chien Chieh Chiang, Wen-Chun Tseng, Wen-Tsung Tsai, Cheng-Sheng Huang Department of Mechanical Engineering, National Yang Ming Chiao Tung University This study introduces an handheld device utilizing a gradient guided-mode resonance sensor. Multiplexed detection of albumin and creatinine at concentrations of 0-500 and 0-10000 µg/mL showed corresponding LODs of 0.66 and 0.61 µg/mL.

--- Coffee Break 15:00-15:30 -----

[ALPS5] 15:30-16:30

Tohoku Univ.

Chair: Yuji Matsuura

ALPS5-01 15:30

applications

Yoshihisa Yamaoka

Komatsu Universitv

Invited

Optical devices and techniques for

bio and medical applications (2)

Development of photoacoustic

Recently, we have proposed the introduction

of a liquid-crystal element of adaptive optics

photoacoustic microscopy (PAM). These

and imaging contrast in deep tissues.

techniques improve the spatial resolution

and combination of two-photon absorption in

microscopy for biomedical

ALPS7-04 15:00

University

structure

ALPS7-03 14:45

silicate phosphors

Synthesis and luminescence

properties of Ce-doped stannite-type

¹Saitama University, ²Institute for Materials

Research, Tohoku University, ³New Industry Creation Hatchery Center, Tohoku University,

⁴Institute of Laser Engineering, Osaka

This study reports the luminescence

properties of Ce-doepd silicate phosphors

cation, B: divalent cation, C: Si) crystal

with the stannite-type A_2BC0_4 (A: monovalent

Natsuki Shimoyama¹, Shohei Kodama¹,

Taiga Nishii¹, Shunsuke Kurosawa^{2,3}

Ikuo Yanase1, Hiroaki Takeda1

Synthesis of high surface perovskite quantum dot aerogel for degradation rhodamine B under visible light

Dai-Mei Lin, Tai-Yuan Chen, Chia-Wun Dai, Guan-Ru Lin, Pin-Hsuan Hsu, Da-Xun Wang, Chia-Ching Wu Department of Applied Science/National Taitung University In this study, highly stable $CsPbIBr_2$ nanocrystals with nitrogen-doped graphene quantum dots (N-GQD-CsPblBr₂) were successfully synthesized. The N-GQDs-CsPblBr2/TiO2 aerogel was synthetized for use as photocatalysts, and they enhanced the degradation of RhB under visible light.

ALPS7-05 15:15

Invited

3D Micro-Raman Tomographic Measurement on Subsurface of Magnesium Silicide Wafer

Kazuma Watanabe, Teppei Onuki Hirotaka Ojima, Jun Shimizu, Libo Zhou, Haruhiko Udono Ibaraki Universitv

Mg₂Si, are expected to be applied to infrared photosensors and thermo-photovoltaic cells. Microscopic and tomographic observation was conducted on subsurface of magnesium silicide wafer using confocal Raman microscope to evaluate machined surface quality

----- Coffee Break 15:30-15:45 -----

[ICNN3] 15:20-16:50 Session 2 Chair: Jun Tatebayashi

Osaka University

ICNN3-01 15:20

Gap-Plasmon-Enhanced Superconducting Photon Detectors at Single-Photon Level Yu-Jung Lu^{1,2}

Invited

¹Academia Sinica. ²National Taiwan University We developed a novel system that integrates NbN superconducting microwire photon detectors with gap-plasmon resonators to improve the photon detection efficiency to 98% while preserving all detector performance features, such as polarization insensitivity

ICNN2-03 14:30

Meta-microscope for phase contrast imaqinq

ICNN <Room 414+415>

Cheng Hung Chu¹, Yu-Hsin Chia¹, Hung-Chuan Hsu¹, Sunil Vyas¹, Takuo Tanaka², Pan-Chyr Yang¹, Din Ping Tsai³, Yuan Luo¹ ¹National Taiwan University, ²RIKEN Center for Advanced Photonics, ³City University of Hong Kong

We propose an ultracompact metamicroscope for optical phase contrast imaging, using metalenses and a spiral metasurface, which successfully images various bio-samples. ResNet is integrated with the meta-microscope to convert the bright-field images into edge-enhanced ones.

ICNN2-04 14:45

Varifocal Meta-devices from 1D to 3D for Bioimaging and Future 6G Communication

Jingcheng Zhang, Mu Ku Chen, Din Ping Tsai City University of Hong Kong

Meta-devices enable advanced optical and THz applications, such as bioimaging and 6G communications. we design, fabricate, and implement a dielectric Moiré metalens for fluorescence imaging. We also report the synthetic phase design of rotary doublet Airy beam and triplet Gaussian beam varifocal meta-devices to fully control the terahertz beam's propagation direction and coverage area

----- Coffee Break 15:00-15:20 -----

Oral, Monday, 22 April PM

OPTM <Room 213>

OPTM1-02 14:30

Why are shiny surfaces optically

non-cooperative? Rainer Tutsch, Markus Petz TU Braunschweig

In our presentation we discuss the effect of aberrations in the presence of specular reflections in optical metrology, show the results of experiments and simulations and propose a technique to reduce the errors.

OPTM1-03 14:45

Traceable sphericity measurements of spherical sections at PTB

Markus Cornelius Schake Physikalisch-Technische Bundesanstalt The first results of a long-term experiment to determine the form stability of the transmission spheres employed for calibration purposes at PTB are presented. The results imply consistency of the uncertainty in the sphericity measurement of the transmission spheres under varying reproducibility conditions with the currently employed expanded measurement uncertainty.

----- Coffee Break 15:00-15:30 -----

[OPTM2] 15:30-17:00 Session 2 Chairs: Jessica Onaka Utsunomiya University Mikio Kurita Kyoto University

OPTM2-01 15:30

Invited Development of a Triangulation-Based Laser Displacement Meter for On-machine Measurement Tatsuki Otsubo, Takanori Yazawa

Nagasaki University We developed a laser displacement meter for on-machine measurement. The developed laser displacement meter can eliminate motion errors of machine tool axes and environmental vibrations.

ALPS <room 303=""></room>	Oral, Monday ALPS <room 413=""></room>	, 22 April PM ALPS <room 511+512=""></room>	ICNN <room 414+415=""></room>
ALPS3-02 16:00 High Peak Power Hybrid Nd:YVO4 Laser with Tuneable Repetition Rate Jin Hyuck Choi ¹ , Wonseon Choi ¹ , Myeong Hwan Kim ¹ , Bong-Ahn Yu ¹ , Young Su Kim ² , Ji Yoon Gwag ² , Eui Seung Son ³ , Jeongeon Kang ³ , Seong Ku Lee ¹ ¹ <i>Gwangju Institute of Science and Technology,</i> ² Hanwha systems, ³ Defense Rapid Technology <i>Research Institute</i> We developed a repetition-rate tuneable hybrid Nd:YVO4 laser with high peak power. The laser peak power at 532 nm ranged from 1.0 to 0.7MW at the repetition rate from 7.5 to 15 kHz. M. ² and M. ² at 10 kHz were 1.3 and 1.1, respectively.	ALPS5-02 16:00 Mid-infrared Photoacoustic Spectroscopy Using Piezoelectric Transducer For Non-invasive Blood Component Analysis Kiiko Aiba, Saiko Kino, Yuji Matsuura <i>Tohoku University</i> In photoacoustic spectroscopy detecting ultrasounds produced by irradiation of infrared pulsed light, a method for inducing resonance by varying the pulse modulation frequency was investigated. Using this method, we obtained photoacoustic spectra of human skin.	[ALPS8] 15:45-17:00 Novel optical materials/structure and applications (3) Chair: Valentin Petrov Max Born Institute ALPS8-01 15:45 Invited Single crystal fibers for direct amplification of femtosecond optical vortices Yongguang Zhao Jiangsu Normal University We exploit a straightforward approach to directly amplify a femtosecond optical vortex by using a single-crystal fiber amplifier system, the spatial and temporal features can be well-conserved during the amplification.	ICNN3-02 15:50 Current-crowding-free superconducting nanowire single- photon detectors enabled by local helium ion irradiation Stefan Strohauer ¹ , Fabian Wietschorke ² , Christian Schmid ² , Stefanie Grotowski ¹ , Lucio Zugliani ² , Rasmus Flaschmann ² , Björn Jonas ² , Kai Mueller ² , Jonathan Finley ¹ Walter Schottky Institute and School of Natural Sciences, Technical University of Munich, Germany, ² Walter Schottky Institute and School of Computation, Information an Technology, Technical University of Munich, Germany Local helium ion irradiation is utilized to enhance the sensitivity of superconductir nanowire single-photon detectors (SNSPI while preserving the high switching curre of unirradiated SNSPDs. This enables current-couvding-free SNSPE

ALPS3-03 16:15

Self-similar evolution of amplifier similariton through a bifurcation path in a near-zero net cavity dispersion Yb-doped fiber laser

Xinxu Duan, Hongbo Jiang, Yuantong Liu, Zhengxin Gao, Lei Jin

Harbin Engineering University We observed the bifurcate self-similar evolution of amplifier similariton by simulation in an Yb-doped fiber laser with near-zero net cavity dispersion. Distinct convergent solutions under identical conditions result in the bifurcation.

ALPS5-03 16:15

Simplified Photothermal Deflection Spectroscopy System for Non-Invasive Biological Tissue Analysis

Hiroto Ito, Saiko Kino, Yuji Matsuura Tohoku University

A photothermal deflection spectroscopy system that detects the heat generated by mid-infrared light absorption was realized using a simplified system. The effectiveness of this system was confirmed by measuring glucose solution and human fingertips.

ALPS8-02 16:15

Sub-80-fs all-solid-state Kerr-lens mode-locked laser based on Yb: GdScO₃ crystal Si vuan Niu

Xidian University

We report on a Kerr-lens mode-locked laser based on Yb:GdScO3 crystal for the first time. Pulses as short as 74 fs at 1061.8 nm with an average output power of 182 mW was obtained.

ALPS8-03 16:30

Topological texturing and structuring of tungsten using optical vortex femtosecond laser ablation

Haruki Kawaguchi^{1,2}, Ryo Yasuhara^{1,} Haotian Yang², Reina Miyagawa³, Koji Sugioka⁴, Chika Hori¹, Masato Ota^{1,2}, Hiyori Uehara¹ National Institute for Fusion Science, National Institutes of Natural Sciences, ²The Graduate University for Advanced Studies, SOKENDAI, ³Department of Physical Science and Engineering, Nagoya Institute of Technology, ⁴RIKEN, Center for Advanced Photonics

We have demonstrated the formation of laser-induced periodic surface structures (LIPSS) on tungsten using a vector vortex laser. The vector vortex laser processing provided attractive 2-dimensional chiral texturing and 3-dimensional topological structuring on tungsten.

ALPS8-04 16:45

The impact of Er/Tm impurities in Yb:YLF on anti-Stokes fluorescence cooling

Stefan Pueschel, Christian Kränkel Hiroki Tanaka

Leibniz Institut für Kristallzüchtung (IKZ) Energy transfer processes from Yb3+ to Er3+ and Tm³⁺ in YLF are investigated to quantify their influence on anti-Stokes fluorescence cooling. We revealed that Er3+ causes a significant intensity dependence on the laser cooling efficiency.

current-crowding-free SNSPDs with unity internal quantum efficiency for 1550 nm photons.

ICNN3-03 16:05

Enhancing detection efficiency of superconducting nanowire singlephoton detectors by modifying thermal conductance via helium ion irradiation

Fabian Wietschorke¹, Stefan Strohauer² Markus Döblinger³, Christian Schmid¹, Lucio Zugliani¹, Stefanie Grotowski² Rasmus Flaschmann¹, Björn Jonas¹, Jonathan Finley², Kai Müller¹ ¹Walter Schottky Institute and Department for Electrical and Computer Engineering. Technical University of Munich, Germany, ²Walter Schottky Institute and Physics Department, Technical University of Munich, Germany, 3Department of Chemistry, Ludwig-Maximilians-Universität München, 81377 Munich Germany

We investigated the influence of Helium ion irradiation on NbTiN deposited on a Si/SiO2 wafer in regards of electrical and thermal transport properties and found a decrease in heat conductance from superconductor to the substrate.

ICNN3-04 16:20

Nonscattering Inspection of Surface Plasmon Polaritons Steering – a **Graphene Photodetector**

Chia-Hung Wu¹, Kuo-Ping Chen ¹National Yang Ming Chiao Tung University, ²National Tsing Hua University

Light-matter interaction between graphene and surface plasmon polaritons was investigated. Graphene was embedded in a plasmonic system for nonscattering detection with photoresponsivity of 15 mA/W. This concept may be applicable in future nanoscale integrated circuits.

ICNN3-05 16:35

Investigation of High Brightness Blue Quantum Dot Light-Emitting Diodes with Hybrid Charge Transport Layers Lin Chien Lin, Chang Chih En, Shi Jing Teng,

Yu Hsin Chieh National Yang Ming Chiao Tung University

MgZnO nanoparticles with various Mg compositions was used as electron transport layer (ETL) for quantum dot light emitting diodes (QLEDs) fabrication, the maximum luminance (Lmax) of QLEDs with Mg0.15Zn0.85O can be up to 48.865 cd/m².

Oral, Monday, 22 April ΡM

OPTM <Room 213>

OPTM2-02 16:00

In-process Evaluation of Water Jet **Dynamics in Water Jet Guided Laser** Processing through Observation of **Raman Scattering**

Shoichi Ui, Mayuko Osawa, Shotaro Kadoya, Masaki Michihta, Satoru Takahashi Dept. of Precision Engineering, The University of Tokyo

A novel in-process evaluation method of water jet condition in WJGL processing utilizing Raman scattering was proposed and visualization of water jet dynamics as a waveguide function in every laser pulse was achieved.

OPTM2-03 16:15

Measurement of surface form of freeform optics using non-contact multiwavelength interferometry Jayesh Navare¹, Neil Fitzgibbon¹, Gabrielle Le Doeuff²

¹Taylor Hobson Ltd., ²AMETEK GmbH This paper investigates the feasibility of measuring surface form of freeform optics using non-contact multiwavelength interferometry. A bi-conic lens, which is one of the most fundamental freeform optics, was measured on a non-contact multiwavelength interferometer.

OPTM2-04 16:30

Effect of training dataset on visionbased position identification using convolutional neural network Risako Mita, Kotaro Mori, Daisuke Kono Kyoto University

Convolutional neural network was used for identifying the target marker's position in vision-based displacement measurement. Three datasets were created and the effect of training dataset on the accuracy of position identification was investigated.

OPTM2-05 16:45

Fundamental investigation on subpixel resolution in motion capturing by function fitting method Daisuke Kono Kyoto University

The limitation of subpixel resolution in motion capturing by the function fitting method was investigated using simulation. The detection limit and the relationship between the bit number of A/D conversion and subpixel resolution were discussed.

	Oral, Tuesday,	23 April AM	
ALPS <room 303=""></room>	ALPS <room 413=""></room>	ALPS <room 511+512=""></room>	HEDS <room 311+312=""></room>
			[HEDS1] 9:00-10:15 Collisionless Shock 1 Chair: Takayoshi Sano Osaka University
			HEDS-OP 9:00
			Opening Remarks Ryosuke Kodama <i>Osaka University</i>
[ALPS9] 9:15-10:30 Novel solid state / fiber / diode lasers and applications (1) Chair: Shotaro Kitajima			
Nagoya Univ.			HEDS1-01 9:10 Invite
ALPS9-01 9:15 Invited Femtosecond fiber lasers in the visible spectrum: achievements and prospects Invited Michel Olivier ^{1,2} , Marie-Pier Lord ¹ , Martin Bernier ¹ , Réal Vallée ¹ Invited 'l'Iniversité Laval, ² Cégep Garneau The recent development of the first femtosecond fiber laser at visible wavelengths and its complete theoretical modeling is presented. Potential development avenues such as the operation at other wavelengths and alternate cavity designs are discussed. ALPS9-02 9:45 Low-doped Tb:YLF for direct blue laser Moritz Badtke, Sascha Kalusniak, Stefan Püschel, Hiroki Tanaka, Christian Kränkel Leibniz-Institut für Kristallzüchtung Low-doped Tb ³⁺ :YLF samples exhibit strong fluorescence from the ⁶ D ₃ multiplet under UV			Overview of Laboratory Astro-Particle Physics Experiments at Laser and Accelerator Facilities Gianluca Gregori University of Oxford We will an overview of selected experiments performed at high-power laser facilities to study the propagation of high energy charged particles through magnetized and turbulent plasmas. We will also present newer experiments performed at the CERN's accelerator complex aimed at recreating a laboratory analogue of ultra-relativistic blazar-induced pair jets propagating into the intergalactic tenuous plasma.
excitation due to decreasing cross-relaxation strength. We evaluate the potential of this	<i>Chiba Institute of Technology</i> Yu Tokizane		HEDS1-02 9:50 Invite
emission for direct violet or blue lasing.	Tokushima Univ.		Laboratory investigation on particle
ALPS9-03 10:00 Phase Detection using Second Harmonic Generation in Divided Pulse Amplification Haruyuki Miyake, Kazuki Yoshizawa, Akira Shirakawa The University of Electro-Communications A new method is proposed to detect phase differences between divided pulses using second harmonic generation in divided pulse amplification for a large number of divisions. Detection in four pulses to two pulses was demonstrated.	ALPS13-01 10:00 Invited Towards quantum-enhanced THz sensing Dionysis Adamou ² , Lennart Hirsch ² , Taylor Shields ² , Seungjin Yoon ² , Adetunnise C. Dada ² , Jonathan M. R. Weaver ² , Daniele Faccio ² , Lucia Caspan ³ , Marco Peccianti ⁴ , Matteo Clerici ^{1,2} 'University of Insubria, Como, Italy, ² University of Glasgow, Glasgow, UK, ³ University of Strathclyde, Glasgow, UK, ⁴ University of Loughborough, Loughborough, UK THz time-domain spectroscopy is important for fundamental studies and applications. Being limited by the probing pulse shot noise, quantum metrology could enhance its sensitivity. We shall present our first		energization through magnetized shocks and associated instabilities Weipeng Yao ^{1,2} , Andrea Ciardi ² , Julien Fuchs ¹ 'LULI - CNRS, CEA, UPMC Univ Paris O6 : Sorbonne Universite, Ecole Polytechnique, Institut Polytechnique de Paris - F-91128 Palaiseau cedex, France, ² Sorbonne Universite Observatoire de Paris, Universite PSL, CNRS, LERMA, F-75005, Paris, France The origin of energetic non-thermal particles in the Universe is an open question. Collisionless shocks [1-3], with their associated instabilities [4], can transfer energy to particles during their interaction with ambient plasma. Using high-power lasers coupled with strong magnetic fields, we can produce such shocks and instabilities in the laboratory and observe
	attempts in this direction.		the energization of protons.

[ALPS15] 10:15-11:45 Novel optical materials/structure and applications (4) Chairs: Kentaro Miyata RIKEN

Shunsuke Kurosawa Tohoku University

ALPS15-01 10:15

Fluorooxoborates: Novel Candidates for **Deep-UV Nonlinear Optical Materials** Shilie Pan, Miriding Mutailipu

Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences Fluorooxoborates have been considered as the new fertile fields for searching the deep-UV NLO materials. AB₄O₆F and MB₅O₇F₃ family not only inherit the favorable structural characteristics of KBBF, but also possess superior optical properties. Both two series possess the optical properties required for the deep-UV NLO applications, which make them potential candidates to produce the deep-UV coherent light by the direct SHG process.

Invited ----- Coffee Break 10:15-10:35 -----

50

ALPS9-04 10:15

Towards Amplification of All Normal Dispersion Mode-locked Fiber Laser using Multicore Fiber Yasufumi Yogi

Institute for Laser Science, The university of Electro-Communications

We have developed a mode-locked fiber laser as a seed pulse source for pulse amplification using multicore fiber. The pulse was injected into a multicore fibre and coupled to the in-phase mode.

Yosuke Minowa¹, H Masaaki Ashida¹

¹Osaka University, ²Daicel Corporation Resonant optical manipulation is a powerful method for selectively transporting nanoparticles based on quantum properties. However, the limitations of its performance have not been fully elucidated. This study successfully demonstrates nanodiamonds containing a few silicon-vacancy centers.

----- Coffee Break 10:20-10:45 -----

Tue, 23 April, AM

	Oral, Tuesday	, 23 April AM
OPTM <room 213=""></room>	SLPC <room 416+417=""></room>	XOPT <room 313+314=""></room>
	[SLPC-OP] 8:45-9:00 Opening Remark of SLPC 2024 Chairs: Masahiro Tsukamoto <i>Osaka University</i> Yuji Sato <i>Osaka University</i>	
[OPTM3] 9:15-10:15	[SLPC1] 9:00-10:30 Additive Manufacturing / Selective Laser Melting Chairs: Yuji Sato	[X0PT1] 9:15-10:20
Session 3 Chairs: Hunglin Hsieh National Taiwan University of Science and Technology	Osaka University Masahiro Tsukamoto Osaka University	XFEL1 Chair: Aymeric Robert MAX IV Laboratory
Tatsuki Otsubo Nagasaki University	SLPC1-01 9:00 Invited	
OPTM3-01 9:15	Numerical Microstructure Evolution for Laser Powder Bed Fusion Process by Lattice Boltzmann and Multi-Phase Field Methods	XOPT-OP 9:15
Diservation of Potential Failures in Ceramic Cutting Tools Using Microscopic Raman Imaging Feppei Onuki, Ryohei Tazawa, Shuo Liu, Hirotaka Ojima, Jun Shimizu, Libo Zhou Ibaraki University Tool conditions in cutting edge and grinding wheel were investigated using microscopic Raman imaging method. The Raman images revealed hidden abnormality like micro cracks, residual stress, chip adhesion that is nvisible in conventional observation.	Botzmann and Multi-Phase Field Methods Sukeharu Nomoto, Jun Katagiri, Masahiro Kusano, Tomonori Kitashima, Makoto Watanabe National Institute for Materials Science A three dimensionally integrated numerical method using lattice Boltzmann method and multi-phase field method is proposed for simulating melting and solidification of metal alloy in laser powder bed additive manufacturing process. Simulations are performed in conditions of different beam power values. Simulated solidified microstructures are confirmed to be qualitatively agreement with experimental measurements. SLPC1-02 9:30	XOPTI-01 9:20 Invited Active Q-switched X-Ray Regenerative Amplifier Free-Electron Laser Jingyi Tang, Zhen Zhang, Jenny Morgan, Erik Hemsing, Zhirong Huang SLAC National Accelerator Laboratory In this talk I will discuss a novel scheme to achieve an active Q-switched cavity-based free electron laser. I will also present the experimental preparations undertaken for the CXBFEL R&D project at LCLS.
Development of mode-locked mid- infrared laser and its repetition frequency control Hiraku Matsukuma, Masashi Nagaoka, Hisashi Hirose, Ryo Sato, Wei Gao Tohoku University A mode-locked mid-infrared laser is developed for precision metrology. We also developed the controlling method of repetition frequency.	Understanding Printability of Metal Matrix Composite from Selective Laser Melting Process Using Analytical and Numerical Approaches Patcharapit Promoppatum ¹ , Bralee Chayasombat ² , Sasitorn Srisawadi ² , Dhritti Tanprayoon ² , Krisda Tapracharoen ² , Bonyakorn Tummake ² , Masahiro Ihama ³ , Yuta Mizuguchi ³ , Yuji Sato ³ , Tetsuo Suga ³ , Masahiro Tsukamoto ³ , Ola L.A. Harysson ⁴ ¹ Department of Mechanical Engineering, King Mongkut's University of Technology Thonburi, ² National Metal and Materials Technology Chenter, ³ Joining and Welding Research Institute, Osaka University, ⁴ Edward P. Fits Department of Industrial and Systems Engineering, North Carolina State University This presentation explores additively manufactured metal-matrix composites (MMCs) using Inconel 718 alloy reinforced with titanium carbide (TiC). Through varied single track experiments, we	X0PT1-02 Withdraw

OPTM3-03 9:45

Thermal and Angle Variation Effects on a Multimode Interferometer Operating in Reflection Mode by Fourier Phase Analysis

Tania Lozano Hernandez¹, Daniel Jauregui Vazquez², Julian M. Estudillo Ayala¹,

Juan M. Sierra Hernandez¹, Roberto Rojas Laguna¹, Isai Espinoza Torres³ ¹Departamento de Ingeniería Electrónica, División de Ingenierías Campus Irapuato Salamanca, Universidad de Guanajuato, Carretera Salamanca-Valle de Santiago, Salamanca 36885, México, ²Centro de Investigación Científica y de Educación Superior de Ensenada, División de Fisica Aplicada-Departamento de Óptica, Carretera Ensenada-Tijuana, No. 3918, Zona Playitas, Ensenada 22860, México, ³Graduate School of Engineering, Hiroshima University 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan

This study explores the modal sensitivity of a long reflective multimode optical fiber device for angle and temperature detection. Fourier phase analysis enables precise angle detection $(1.52 \text{ rad/}^2, 3.4^\circ)$ with minimal thermal impact (0.0062 rad/°C).

SLPC1-03 9:45

Influence of Processing Parameters of Multi-Beam Laser Directed Energy Deposition on Microstructure and Defects of a CrMnFeCoNi High-Entropy Alloy

and microstructural features. Employing analytical predictions and numerical approaches, alongside comprehensive experiments, we aim to understand the printability of these advanced materials.

Kholqillah Ardhian Ilman^{1,2}, Yorihiro Yamashita³, Takahiro Kunimine⁴ ¹Division of Mechanical Science and Engineering, Graduate School of Natural Science and Technology, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa, 920-1192, Japan, ²Department of Mechanical Engineering, Faculty of Engineering, Universitas Muhammadiyah Surakarta, Sukoharjo, Central Java, 57169, Indonesia, ³Department of Mechanical Engineering, National Institute of Technology, Ishikawa College, Kitachujo, Tsubata, Ishikawa, 929-0392, Japan, ⁴Faculty of Mechanical Engineering, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan This study explores single-bead CrMnFeCoNi

HEA processing using multi-beam L-DED and modified laser focusing. It examines laser power and scanning speed effects on microstructure, defects, and bead crosssectional area, providing insights for optimized HEA printing.

X0PT1-03 9:50

Overcoming challenges in the hard X-ray regime under high-heat load at EuXFEL: a diamond channel-cut monochromator as an alternative

Invited

Kelin Tasca, Anders Madsen, Ulrike Bösenberg, Alexey Zozulya, Roman Shayduk, Peter Zalden, Angel Rodriguez-Fernandez, Felix Brausse, Johannes Moeller, Joerg Hallmann, James Moore, Jan-Etienne Pudell, Wonhyuk Jo, Mohamed Youssef, Harald Sinn,

Wonhyuk Jo, Mohamed Youssef, Harald Sinn, Maurizio Vannoni, Liubov Samoylova European XFEL

In this contribution, we will present the first results of the performance at room temperature and cryogenic cooling of the diamond channel-cut monochromator (DCCM) under the MHz repetition rate of the EuXFEL with sub-mJ pulses.

NOTE

	Oral, Tuesday,	23 April AM	
ALPS <room 303=""></room>	ALPS <room 413=""></room>	ALPS <room 511+512=""></room>	HEDS <room 311+312=""></room>
Coffee Break 10:30-10:45	ALPS13-02 10:30 THz-driven electron emission and applications Tobias Olaf Buchmann, Matej Sebek,		[HEDS2] 10:35-11:40 Collisionless Shock 2 Chair: Hye-Sook Park <i>LLNL</i>
[ALPS10] 10:45-12:00 Novel solid state / fiber / diode lasers and applications (2) Chair: Kazuyuki Uno Yamanashi Univ.	Simon Jappe Lange, Peter Uhd Jepsen DTU Electro, Technical University Denmark We present a THz detection method based on vacuum electronics and THz-driven electron field and thermionic emission. This technique offers detection and imaging capabilities in industrial and research domains with less complexity than conventional methods.		HEDS2-01 10:35 Invited Turbulence mediated electron acceleration in laser produced collisionless shock Invited Invited Bin Qiao', Xianxu Jin', Zhonghai Zhao', Jianqiang Zhu², Xiantu He' Invited Invited Invited 'Peking University, ² National Laboratory on High Power Laser and Physics, CAS CAS Invited Invited
ALPS10-01 10:45 Invited Short-pulse High-power Photonic- crystal Surface-emitting Lasers Takuya Inoue, Ryohei Morita, Masahiro Yoshida, Menaka De Zoysa, Kenji Ishizaki, Susumu Noda Kyoto University We review our recent demonstration of	ALPS13-03 10:45 Observation of carrier accumulation effects with terahertz wave in a GaAs/ AlAs multiple quantum well towards ultrafast optical switch applications Osamu Kojima, Ayumu Takamatsu Chiba Institute of Technology We report the terahertz absorption spectra	ALPS15-02 10:45 Improvement of efficiency of walk-off compensated β-BaB₂0₄ using room-temperature bonding Shion Naito, Tomoya Tanaka, Ichiro Shoji Chuo University We found that only one of four manufacturers could fabricate β-BaB₂0₄	Astrophysical collisionless shock is one of the most powerful particle accelerators in the Universe, originating from the interaction between supersonic plasma flows and the background media that are typically in turbulent states. In this talk, I shall report our recent experimental results of the interactions between laser-produced collisionless shock and plasma turbulence
short-pulse high-power photonic-crystal surface-emitting lasers based on introduction of saturable absorbers and self-evolving photonic crystals. We realize short-pulse generation with 200-W-class peak powers and 30-ps-class pulse widths.	under the continuous-wave laser-excitation in a slightly strained quantum well. It was an advantage for the ultrafast-optical-switch application that the remarkable increase of the absorption was not observed.	plates with small deviations from the phase-matching angle. Walk-off compensating structures using these plates improved the wavelength-conversion efficiencies.	on Shenguan-II laser facility, where electron fermi accelerations are observed.
ALPS10-02 11:15 Single-Mode Distributed Feedback Lasing Based on a Uniform Grating and Auxiliary Passive Waveguide Drew Maywar, Bryce Tennant <i>Rochester Institute of Technology</i> We present a single-mode DFB lasing mechanism exhibiting gain margin and power flatness superior to the <i>X</i> 4-shifted DFD long cashed but effective direct and	ALPS13-04 11:00 Invited Terahertz Optical Rectification and Second-Harmonic Generation at the Surface of Nonlinear Crystals Mathias Hedegaard Kristensen ¹ , Esben Skovsen ¹ , Emilie Hérault ² , Jean-Louis Coutaz ^{1,2} Jean-Louis Coutaz ^{1,2} ¹ Aalborg University, ² Univ. Savoie Mont Blanc We study terahertz generation via optical rectification har flocting hoth theoretically	ALPS15-03 11:00 Influence of thermal treatment on light scattering centers in CsLiB ₆ O ₁₀ crystal Yoshihiro Kataoka ¹ , Yuto Matsum ¹ , Ryota Murai ² , Yoshinori Takahashi ² , Hideo Takazawa ¹ , Shigeyoshi Usam ¹ , Masayuki Imanishi ¹ , Mihoko Maruyama ¹ , Yusuke Mori ^{1,2} , Masashi Yoshimura ^{2,3} ¹ Graduate School of Engineering, Osaka Juivarshi ² ² OSHO CHOKO Inc. ³ Institute of	HEDS2-02 11:00 Invited Diamagnetic plasmoid formation in super-Alfvénic, quasi-perpendicular expansion of laser-produced plasma into magnetized ambient plasma at high repetition rates Robert Dorst ¹ , A. Le ² , C. G. Constantin ¹ , J. J. Pilgram ¹ , D. Larson ² , D. B. Schaeffer ¹ , S. Vincena ¹ , S. K. P. Tripathi ¹ , M. Cowee ² , C. Niemann ¹

power flatness superior to the $\lambda/4$ -shifted DFB laser, enabled by offsetting direct- and exchange-Bragg photonic bandgaps of a uniform grating.

ALPS10-03 11:30

High-Order Dispersion Measurements of Chirped Fiber Bragg Grating with White-Light Interferometry

Qingyue Cui¹, Zhe Zhang¹, Zhuoran Li¹, Ke Zhan¹, Qingdian Lin¹, Jun Yu¹, Xiaoyang Guo¹, Cangtao Zhou¹, Shuangchen Ruan²

¹College of Engineering Physics, Shenzhen Technology University, 2Sino-German College of Intelligent Manufacturing, Shenzhen Technology University

A compact and robust all-fiber Michelson interferometer with a new phase retrieval method is proposed for dispersion measurements of CFBG. Benefit from the state-of-the-art OSA, high accuracy and large range measurements are achieved.

----- Lunch 11:30-14:00 -----

rectification in reflection, both theoretically

methodology to detect the weak and

harmonic generation.

possibly very broadband terahertz signal

simultaneously with the reflected second-

and experimentally. Then, we present a new

¹Graduate School of Engineering, Osaka University, ²SOSHO CHOKO Inc., ³Institute of Laser Engineering, Osaka University

Defect-related scattering centers in the nonlinear optical crystal CLBO were remarkably generated after thermal treatment. We also found that the generated scatterings in the crystal became less prominent at room temperature as the time passed.

ALPS15-04 11:15

Second-Harmonic Generation in Heteroepitaxially-Grown OP-GaAs0.75P0.25

Li Wang¹, Shivashankar R Vangala², Stefan Popien3, Marcus Beutler3 James Matthew Mann², Vladimir L Tassev², Edlef Büttner³, Valentin Petrov¹ ¹Max Born Institute for Nonlinear Optics and Ultrafast Spectroscopy, ²Air Force Research Laboratory, ³APE Angewandte Physik und Elektronik GmbH Second-harmonic generation using

femtosecond pulses at 5.5 µm with a repetition rate of 80 MHz is demonstrated in orientation-patterned GaAs0.75P0.25 grown by hydride vapor phase epitaxy on a GaAs template.

ALPS15-05 11:30 Linear Thermal Expansion of Ba2Ga8GeS16

Jonathan Goldstein², Michael Susner², Ryan Siebenaller^{2,3}, Shekhar Guha², Kentaro Miyata⁴, Ginka Exner⁵, Valentin Petrov¹ ¹Max Born Institute for Nonlinear Ontics and Ultrafast Spectroscopy, ²Air Force Research Laboratory, 3 The Ohio State University, 4 RIKEN, 5Plovdiv University Paisii Hilendarski The thermal expansion coefficients of the hexagonal nonlinear optical crystal Ba2Ga8GeS16 and their temperature dependence are studied.

S. Vincena', S. K. P. Tripathi', M. Cowee², C. Niemann¹

¹University of California - Los Angeles, ²Los Alamos National Laboratory, ³Lawrence Livermore National Laboratory

We present two-dimensional mapping of a super-Alfvénic ($M_A > 1$) carbon, laser produced plasma (LPP) as it expands into a preformed, magnetized helium plasma. The formation and propagation of a diamagnetic plasmoid is observed in the ambient plasma that separates a relatively large distance (~0.5 di) from the bulk diamagnetic cavity (~di).

HEDS2-03 11:25

Proton acceleration in a high-intensity laser-driven collisionless shock Youichi Sakawa

Osaka University Recently, high-intensity laser-driven collisionless electrostatic shock ion acceleration is drawing attention. In this scheme, upstream ions of the shock are reflected and accelerated in by the shock potential. In this talk, collisionless electrostatic shock formation and ion acceleration in a near-critical density multi-component plasma are investgated both in the 2D particle-in-cell simulation and experiments.

----- Lunch 11:40-13:15 -----

OPIC 2024 · 22-26 April, 2024

	Oral, Tuesday	, 23 April AM	
ICNN <room 414+415=""></room>	LDC <room 301=""></room>	LSSE <room 316=""></room>	OMC <room 418=""></room>
Coffee Break 10:30-10:45		Coffee Break 10:30-11:00	
[ICNN5] 10:45-11:45 Session 4 Chair: Wakana Kubo Tokyo University of Agriculture and Technology			[OMC2] 10:45-12:00 Student Session 2 Chairs: Hung-Chuan Hsu National Taiwan University Yusuke Minowa Osaka University
CNN5-01 10:45	Coffee Break 10:45-11:15		OMC2-01 10:45 Invite
ilicon photonics-based laser Doppler ibrometer array for non-contact hotoacoustic imaging anlu Li, Emiel Dieussaert, lohammadamin Ghomashi, Roel Baets <i>Shent University - imec</i> Ve report a silicon photonics-based laser loppler vibrometer array that enables on-contact photoacoustic imaging and liminates contamination risks. The hotonics design is explained and an xperimental demonstration on a silicone hantom is explained.		[LSSE2] 11:00-12:00 Carbon-Neutral 2 Chair: Seigo Ito <i>Univ. Hyoga</i>	Utilizing optical anti-reflection and electromagnetic vacuum field interference in two-dimensional space Dongha Kim, Sanghyeok Park, Jaeyu Kim, Min-Kyo Seo KAIST We present nanophotonic platforms for engineering optical fields in two dimensions and their applications. Our work includes anti-reflection enhanced magneto-optic Ker effect microscopy, quasi-particle-like optica vortex generation, and nanophotonic mirrors for tuning two-dimensional exciton
CNN5-02 11:00 bsorption Enhancement of 2D ransition Metal Dichalcogenides on ilicon Metasurface by Degenerate critical Coupling ingwei Chen ¹ , Junichi Takahara ^{1,2} Graduate School of Engineering, Osaka Iniversity, ² Photonics Center, Graduate School f Engineering, Osaka University Ve realized a dielectric-based Si netasurface platform to accomplish strong		LSSE2-01 11:00 Invited Multiple options for energy storage by hydrogen storage material Tessui Nakagawa Univ. Ryukyus We will discuss three hydrogen storage materials, which are ammonia, ammonia borane, and hydrogen storage alloys. These materials are important for finding the effective ways of energy storage in the future.	dynamics.
ght absorption of 2D Transition Metal ichalcogenides. An absorption nhancement of WS_2 on metasurface is chieved by about 15.5 times based on egenerate critical coupling.	[LDC2] 11:15-12:00 Keynote 2 Chair: Tetsuya Yagi Nichia Corporation		
CNN5-03 11:15	LDC2-01 11:15		OMC2-02 11:15
Sity Beam Metasurfaces o-Wei Huang ¹ , Cheng Hung Chu ² , Department of Mechanical Engineering, Jational Taiwan University, ² Yong-Lin Institute of Iealth, National Taiwan University, ³ Institute of Medical Devices and Imaging System, National aiwan University, ⁴ Graduate School of Advanced echnology, National Taiwan University, ⁹ Institute f Biomedical Engineering, National Taiwan Iniversity, ⁶ Program for Precision Health and trelligent Medicine, National Taiwan University n this work, we employed finite element nethod electromagnetic wave simulation offtware to analyze the intensity distribution f Airy beam metasurfaces at various ravelengths, providing a comprehensive xploration of the dispersion mechanisms in nese metasurfaces.	Laser TV: Hisense's Technology and Strategy Xianrong Liu', Yuling Gao', Weidong Liu ² , Junichi Ohsako ³ , Qiang Zhong', Youliang Tian' ¹ <i>Hisense Laser Display Co., Ltd., ²Hisense</i> <i>Visual Technology Co., Ltd., ³TVS REGZA</i> <i>Corporation</i> Hisense has been involved in laser display since 2007. This article introduced Hisense's work in technology research and product development. Based on Laser TV, Hisense expands to smart projectors, commercial projectors, and vehicle display. Hisense regards laser display as the most dynamic and innovative opportunity. This article also gives a brief introduction to Hisense's layout in display.		Direct imprint of optical skyrmions with topologically protected polarization textures in a material Rihito Tamura ¹ , Praveen Kumar ² , A. Srinivasa Rao ^{1,3,4} , Katsuhiko Miyamoto ^{1,3} , Natalia M. Litchinitser ⁵ , Takashige Omatsu ^{1,3} ¹ Chiba University, ² Indian Institute of Technology Bhilai, ³ Molecular Chirality Research Center, ⁴ Institute for Advanced Academic Research, ⁵ Duke Univ Optical skyrmions are considered as topologically protected quasiparticles of light which posses highly sophisticated polarization structures. We herein report on the first demonstration of direct imprint of 1s and 2nd optical skyrmions with topologically protected polarization textures in azopolymers. This demonstration highlights the exotic interaction between topologically protected quasiparticles of light and matter.
CNN5-04 11:30 Radial Transfer Matrix Model for		LSSE2-02 11:30 Invited Operando Raman Spectroscopy of	OMC2-03 11:30 Geometric structured modes with
ree-Space Emission Optimization tefan Appel, Viviana Villafane, onathan J. Finley, Kai Müller Valter Schottky Institute, Technical University Aunich Je propose and demonstrate a new kind of ransfer matrix model to simulate the ree-space emission of radial scattering rings ut of a planar waveguide. Benchmarks show 98% overlap with results from FDTD while educing simulation time by two orders of nagnitude. We exploit the speed advantage to ptimize a 10-ring circular bragg grating for aussian emission from an embedded dipole.		Biotrochemical Processes Boon Siang Jason Yeo National University of Singapore In this presentation, we shall share our work on using Raman spectroscopy to detect the intermediates formed during several electrochemical reactions, and to elucidate their reaction mechanisms. The reactions of interests include CO ₂ reduction and hydrogen evolution.	switchable orthogonal polarization by an Nd:YVO₄ laser in a concave-convex cavity Wei-Ru Chen, Pi-Hui Tuan National Chung Cheng University Geometric modes with orthogonal polarization is created by a <i>c</i> -cut Nd:YVO₄ laser in a concave-convex resonator. By the gain crystal birefringence, the switching of orthogonal polarization is achieved by simpl adjusting the cavity length.

OPIC 2024 • 22-26 April, 2024

Tue, 23 April, AM

Oral, Tuesday, 23 April AM

OPTM <Room 213>

OPTM3-04 10:00

Integrating deep learning and photonics for asset integrity monitoring in remote locations

Yong Ma¹, Oliverio Alvarez², Weichang Li², Damian Pablo San Roman Alerigi¹ ¹EXPEC Advanced Research Center, Aramco, ²Houston Research Center, Aramco Americas

Developed and tested a remote monitoring system for equipment integrity in isolated areas, combining visual, IR cameras, and LiDAR with minimal mechanics Softwarebased multimodal deep-learning handles sensor adjustments, processing multimodal imagery for precise equipment displacement and health analysis.

----- Coffee Break 10:15-10:45 -----

[OPTM4] 10:45-12:00 Session 4 Chairs: Zhang Song

Purdue University Daisuke Kono Kyoto University

OPTM4-01 10:45

Light field microscopy with improved resolution in 3D Shin Usuki¹, Reiji Yagi², Tadatoshi Sekine², Kenjiro Takai Miura², Takuma Sugi³ ¹Research Institute of Electronics, Shizuoka University, ²Graduate School of Science and Technoloty, Shizuoka University, ³Graduate

Invited

School of Integrated Sciences for Life, Hiroshima University In order to improve the resolution of the light field microscopy, the multi-frame super-

resolution with sub-pixel image displacements, the focused-unfocused compound plenoptic system and the structured illumination microscopy were implemented.

OPTM4-02 11:15

A Basic Research on The Deep Seabed Classification Technology Using Laser Reflection Images with Different Wavelengths

Shojiro Ishibashi¹, Takamistu Okada², Yutaka Hasegawa³

¹JAMSTEC / Japan Agency for Marine Earth Science and Techonlogy, ²MEDS / Mitsubishi Electric Defense and Space Technologies Corp., ³HPK / Hamamatsu Photonics K.K.

Two types of underwater laser scanners are being developed to generate seabed images using lasers of different two wavelengths. It is expected that the laser scanning images will be able to classify deep seabed.

OPTM4-03 11:30

Insepction of edge detection using spatial filtering

Jingwei Wang¹, Tatsuki Otsubo¹, Megumi Kuroiwa², Toshiaki Yasaka¹, Takanori Yazawa¹

¹Nagasaki University, ²Em Laboratory Corporation This study developed a method for detecting edge defects in straight punching blades and circular molding dies using spatial frequency filtering technology. This technique enables the high-speed and high-precision detection of minute defects, contributing to improved quality assurance and productivity in manufacturing.

SLPC1-04 10:00

Additive Manufacturing Process of Conductive Bio-based Polymer Composites with Hybrid Filler System

SLPC <Room 416+417>

Sasitorn Srisawadi, Siwaporn Srimongkol, Natsaporn Butsri, Panithi Wiroonpochit National Science and Technology Development Agency

This study explores laser-based additive manufacturing (AM) of natural rubber (NR) latex. Conductive NR composites with conductive carbon black and few-layer graphene were formulated, enhancing electrical conductivity. The resulting bio-based polymer composites with a hybrid filler system showcased electromechanical properties, establishing the material as a potential strain sensor.

SLPC1-05 10:15

Fabrication of Periodic Axial Air Gap Structures using Laser Powder Bed Fusion with Wobble-Based Scanning Strategy

Fu-Kai Chuang¹, Chung-Wei Cheng¹, An-Chen Lee¹, Tsung-Wei Chang², Mi-Ching Tsai², Huang-Wei Chang³ ¹National Yang Ming Chiao Tung University, ²National Cheng Kung University, ³National Chung Cheng University This study utilized the self-developed LPBF system, employing soft magnetic material Fe-79Ni-4Mo powder (PC-Permalloy). A wobble-based scanning strategy with a fixed wing overlap rate was implemented for large swing width scanning.

----- Coffee Break 10:30-10:45 -----

[SLPC2] 10:45-12:00 Micro Nano Processing 1 Chairs: Yoshio Hayasaki

Utsunomiya University Masaki Hashida *Tokai University*

SLPC2-01 10:45

Laser-Generated Nanomaterials for Gas Sensing Sergei A. Kulinich *Tokai University, Research Institute of Science and Technology* The talk will deal with nanomaterials produced by laser ablation in liquid field and

Invited

SLPC2-02 11:15 Invi Creation of NV centers by ultrashort

used for gas sensing.

laser irradiation Norikazu Mizuochi^{1,2}

¹Institute for Chemical Research, Kyoto University, ²Center for Spintronics Research Network, Kyoto University

The NV center in diamond has been attracting attention from the viewpoint of applying ultrasensitive sensors and quantum information devices such as single photon sources because of their outstanding photostability. Here, we demonstrate the creation of NV centers in a wide region such as a millimeter-sized region using only an intense single femtosecond laser pulse irradiation.

[XOPT2] 10:45-12:00 Facility1 Chair: Harald Sinn European XFEL

X0PT2-01 10:45 Invited

Novel X-ray optics for SPring-8-II Taito Osaka *RIKEN SPring-8 Center* I will overview our activities in the development of X-ray optics for SPring-8-II, a forthcoming 6-GeV diffraction-limited storage ring, which imposes severe requirements on the X-ray optics to unleash its brilliant potential.

Invited XOPT2-02 11:15

Manipulating Synchrotron X-ray Pulses with Picosecond Resolution

Invited

Jin Wang, Jinxing Jiang, Jian Zhou, Donald Walko, David Czaplewski Argonne National Laboratory

We develop microelectromechanical devices for ultrafast and dynamic X-ray optics as a picosecond synchrotron pulse shaper that shapes the hard X-ray pulses at individual beamlines beyond the synchrotron pulse limits.

----- Coffee Break 10:20-10:45 -----

XOPT <Room 313+314>

NOTE

	Oral, Tuesday	, 23 April PM	
ALPS <room 303=""></room>	ALPS <room 413=""></room>	ALPS <room 511+512=""></room>	HEDS <room 311+312=""></room>
ALPS10-04 11:45		Lunch 11:45-14:00	
Development of sigle-shot measurement of refractive indices using low-coherence interferometry Hiroki Morita ¹ , Ryo Kurihara ¹ , Kento Kowa ² , Yoshitomo Nakashima ² , Hiroyuki Kowa ² ,			
Naoji Oya ² , Takeshi Higashiguchi ¹ ¹ Utsunomiya University, ² TRIOPITCS Japan We have developed the low-coherence single-shot interferometry to measure the group refractive indices of thin glass samples. In this method, two interference fringes can be observed on a single image. The group refractive index can be obtained from the interval of both fringes. The results were in			[HEDS3] 13:15-15:05 Collisionless Shock 3 Chair: Gianluca Gregori University of Oxford HEDS3-01 13:15 Invited Particle Acceleration and Energy
good agreement with the minimum deviation nethod. Our method would contribute to digital transformation technologies such as AR/VR and aerial display devices.			Partition in Turbulent Collisionless Shocks Frederico Fiúza Physics at Instituto Superior Técnico Shock waves produced by violent interactions of supersonic plasma flows with
Lunch 12:00-13:45			the interstellar medium or planetary magnetospheres are observed to heat the
[ALPS11] 13:45-15:15 Novel solid state / fiber / diode lasers and applications (3) Chair: Shigeki Tokita Kyoto University			negnetophics and observe the neutral and accelerate electrons and protons to relativistic speeds. However, the exact mechanisms that control energy partition in these shocks remain a mystery.
ALPS11-01 13:45 Invited			HEDS3-02 13:40 Invited
Terawatt-level 2.4-µm pulses based on Cr:ZnS chirped - pulse amplification			High-power laser experiment forming supercritical magnetized collisionless
Xiaoming Lu ¹ , Xinliang Wang ¹ , Jintai Fan ² , Rongjie Xu ¹ , Junchi Chen ¹ , Long Zhang ^{2,3} , Yunxin Leng ^{1,3} ¹ State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine	[ALPS14] 14:00-15:45 Terahertz devices, nonlinear optics and applications (2) Chair: Shinichi Watanabe Keio Univ.	[ALPS16] 14:00-15:15 High average power lasers and applications (1) Chair: Hiroki Tanaka Leibniz Institute for Crystal Growth	shocks Ryo Yamazaki <i>Aoyama Gakuin University</i> We present an experimental method to form quasiperpendicular supercritical magnetized
Mechanics, Chinese Academy of Sciences, ² Key Laboratory of Materials for High-Power			collisionless shock in a magnetized uniform plasma at rest.
Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences,	ALPS14-01 14:00 Invited Milliwatt-class terahertz signal	ALPS16-01 14:00 Invited Pulse compression of a thin-disk	
³ Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences We have developed a 1-Hz, 0.95-TW,	sources using resonant tunneling diodes Safumi Suzuki	oscillator to GW-level peak power with nonlinear multipass cells Semyon Goncharov ¹ , Kilian Fritsch ² ,	HEDS3-03 14:05 Formation of Magnetized Bow Shocks with High-Power Laser: Dependence of Their
Cr:ZnS-based CPA laser system. We combined Cr:ZnS elements to absorb more pump energy and used the ink-cladding technique to suppress the transverse parasitic lasing inside the Cr:ZnS elements.	Tokyo Institute of Technology Resonant tunneling diodes (RTDs) are one of the promising candidates for THz signal sources. Recently, a high output power of 11.8 mW at 450 GHz was achieved by a	Oleg Pronin ¹ ¹ <i>Helmut Schmidt Universtität, ²n2-Photonics</i> We report nonlinear broadening and pulse compression in two consecutive multipass cells based on dielectric mirrors. The 120 fs	Structure on Magnetic Field Orientation Shuta J Tanaka', Vasuhiro Kuramitsu ² , Kentaro Saka ¹³ , Kenji Toma ⁴ , Jin Matsumoto ⁵ , Munehito Shoda ⁹ , Kazuyoshi Tanaka ¹ , Ryo Yamazaki ¹ , Taichi Morita ⁷ , Shogo Isayama ⁷ ,
ALPS11-02 14:15	36-element coherent array. Besides, attempts to increase in the output power of a single oscillator have been conducted. In	pulses at 14 MHz containing 12.8 µJ were compressed to 7.2 fs with 146 W average power.	Taichi Takezaki ⁸ , Takayoshi Sano ⁹ , Kaori Obayashi ¹ , Juri Shiota ¹ , Yuna Kidokoro ¹ , Shoma Yakura ¹ , Shunsuke Suzuki ⁹ ,
Diode-pumped 88-fs mode-locked Tm,Ho:CLNGG laser based on GaSb- SESAM Anna Suzuki ¹ , Yicheng Wang ¹ , Sergei Tomilov ¹ , Zhongben Pan ² , Clara Jody Saraceno ¹	this presentation, the recent studies for high-power RTD THz oscillators will be introduced.	роно.	Yuki Abe ² , Kiyochika Kuramoto ² , Fuka Nikaido ² , Takumi Minami ² , Adam D Deariing ⁹ , Kosuke Maeda ⁹ , Yuto Suzuki ⁹ , Masahiro Hanano ⁹ , Shuichi Matsukiyo ⁷ , Kentaro Tomita ¹⁰ , Satoshi Kodaira ¹¹ , Yuji Fukuda ¹² , Youichi Sakawa ⁹
Fluhr-University Bochum, ² Key Laboratory of Laser and Infrared System of Ministry of Education We present a SESAM mode-locked			¹ Aoyama Gakuin University, ² Osaka University, ³ National Institute for Eusion Science, ⁴ Tohoku University, ⁵ Keio University, ⁶ University of Tokyo, ⁷ Kyushu University, ⁸ University of Toyama,
Tm,Ho:CLNGG laser pumped by an affordable laser diode. We demonstrate the first sub-100-fs diode-pumped mode-locked laser in the 2-µm wavelength range.			⁹ Osaka University, ¹⁰ Hokkaldo University, ¹¹ National Institute of Radiological Sciences, ¹² Kansai Photon Science Institute The high-power laser experiment of magnetized
ALPS11-03 14:30	ALPS14-02 14:30	ALPS16-02 14:30	bow shock formation is introduced. The experiment was conducted at Gekko XII of Osaka
Development of OCT in 2-µm spectral	Single-pixel spectroscopic imaging	Demonstration of Stable Long-Term 10	University in 2022. We observed the self-emission from the plasma heated by the bow shock.
region by using an all-fiberized ultrashort Tm-Ho co-doped fiber laser	through packaging materials using terahertz waves	J, 100 Hz Operation of a Nanosecond Pulsed DPSSL	
Rongjie Zhang, Futa Osaki, Shotaro Kitajima, Junya Yamamoto, Norihiko Nishizawa NAGOYA University We generated supercontinuum in 2-µm region by utilizing ultrashort pulse Tm-Ho co-doped fiber laser. Supercontinuum was applied as the light source of time-domain	Tomoki Tanetani, Kento Maenaka, Sota Mine, Kodo Kawase, Kousuke Murate Nagoya University Single-pixel spectroscopic imaging through packaging materials was performed using a terahertz parametric generator. We obtained spatial patterns of reagents using the	Luke McHugh ¹ , Mariastefania De Vido ¹ , Gary Quinn ^{1,2} , Danielle Clarke ^{1,2} , Paul Mason ¹ , Jacob Spear ¹ , Jodie Smith ¹ , Martin Divoky ³ , Jan Pilar ³ , Ondrej Denk ³ , Thomas Butcher ¹ , Chris Edwards ¹ , Tomas Mocek ³ , John Collier ¹ ¹ Central Laser Facility, STFC Rutherford Appleton Laboratory, ² Institute of Photonics	HEDS3-04 14:20 Particle Acceleration in a Relativistic Weibel-Mediated Shock Propagating to Electron-Proton-Helium Plasmas with Solar Abundance Sara Tomita ¹ , Yutaka Ohira ² ¹ Tohoku University, ² The University of Tokyo
optical coherence tomography system, and cross-sectional imaging of human finger was demonstrated.	system.	and Quantum Sciences, Heriot-Watt University, ³ HiLASE Centre, Institute of Physics of the Czech Academy of Sciences	The observed chemical abundance of the cosmic rays shows enhancements than solar abundances (Batisita et al. 2019). We perform the first PIC
		We report on the successful stable long-term operation of a nanosecond diode-pumped solid-state laser (DPSSL). DiPOLE-100Hz ran at 10 J, 100 Hz with an optical-to-optical efficiency of 25.4% and 1% rms energy stability.	simulation of a relativistic collisionless shock propagating to the electron-proton-helium plasma with solar abundance. We found that the number of energetic helium ions is larger than that of the protons. We can also explain their

of 25.4% and 1% rms energy stability.

that of the protons. We can also explain their acceleration fraction analytically.

	Oral, Tuesday	, 23 April PM	
ICNN <room 414+415=""></room>	LDC <room 301=""></room>	LSSE <room 316=""></room>	OMC <room 418=""></room>
Lunch 11:45-13:30	Lunch 12:00-13:00	Lunch 12:00-13:00	OMC2-04 11:45 Advancing Metasurfaces: Harnessing
	[LDC3] 13:00-15:15 Light sources and components 1 Chair: Tatsushi Hamaguchi <i>Mie University</i>	[LSSE3] 13:00-15:00 Carbon-Neutral 3 Chair: Tessui Nakagawa <i>Univ. Ryukyus</i>	Integrated-resonant Units for Boosting Phase Compensation and Efficiency Rong Lin ¹ , Jin Yao ¹ , Mu Ku Chen ^{1,2,3} , Din Ping Tsai ^{1,2,3} ¹ Department of Electrical Engineering,
	LDC3-01 13:00 Invited	LSSE3-01 13:00 Invited	City University of Hong Kong, ² Centre for Biosystems, Neuroscience, and
	Continuous-wave operation of long cavity III-nitride vertical-cavity surface-emitting lasers utilizing a topside dielectric curved mirror Nathan Christopher Palmquist, Stephen Gee, Srinivas Gandrothula, Xianqing Li, Steven P. Denbaars, Shuji Nakamura University of California, Santa Barbara	Porous Carbons using Metal-Organic Frameworks (MOFs) as Precursors for High Surface Area Hiroshi Matsutak ^{1,2} , Aya Kashifuku ¹ , Manabu Inuka ¹ , Takaaki Orii ¹ , Takeharu Yoshii ² , Hirotomo Nishihara ² , Naoki Uchiyama ^{1,3} , Daigo Miyajima ^{1,4} ¹ RIKEN, ² Tohoku University, ³ Atsumitec Co., Ltd., ⁴ The Chinese University of Hong Kong	¹⁰ Displanting the real cost of Hong Kong, ³ The State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong Integrated-resonant units (IRUs) enhance phase compensation and efficiency of metasurfaces, enabling advanced optics in visible and microwave spectra.
	We report our recent results of a GaN VCSEL with a topside dielectric concave mirror. CW	MOF-derived porous carbons have attracted	Lunch 12:00-13:30
[ICNN6] 13:30-15:00 Session 5 Chair: Koichi Okamoto Osaka Metropolitan University	fundamental transverse mode operation is demonstrated and analyzed for current apertures up to 11 µm. Alternative methods of shaping the transverse mode are discussed in this talk.	interest in potential applications such as gas storage because of their large surface area and stability. Here, we report a new perspective on synthesizing the porous carbons with good reproducibility.	[OMC3] 13:30-15:05 Session 1 Chair: Takashige Omatsu <i>Chiba University</i>
ICNN6-01 13:30 Invited	LDC3-02 13:30 Invited	LSSE3-02 13:30 Invited	OMC3-OP 13:30
Controlling the optical vortex beam emission from a photonic chip Xu Fang University of Southampton We propose and numerical demonstrate	Fabrication of Stacked RGB Monolithic GalnN-based µLED Arrays with Tunnel Junctions and Challenges for display Applications Motoaki Iwaya ¹ , Tatsunari Saito ¹ ,	Strong light-matter interactions at a nanometric metal tip for molecular sensing and control Taka-aki Yano ^{1,2} ¹ Tokushima University, ² RIKEN	Opening Remarks Takashige Omatsu <i>Chiba University</i> OMC3-01 13:35
several methods for generating optical vortex beams from planar, photonic chip-based devices. The creation of high-value topological charges and incident direction-based tuning are observed in methods that utilize integrated metasurfaces.	Yoshinobu Suehiro ¹ , Tetsuya Takeuchi ¹ , Satoshi Kamiyama ¹ , Daisuke Iida ² , Kazuhiro Ohkawa ² ' <i>Meijo University, ²King Abdullah University of</i> <i>Science and Technology (KAUST)</i> We have proposed a method of forming tunnel junction layers between RGB devices by crystal growth and electrodes on etched n-type layers, and fabricated stacked monolithic RGB full-color µLED arrays.	We present strong light-matter interactions at a sharp metallic tip which enables us to demonstrate not only nanoscale sensing but also nanoscale control of molecular reactions.	Laguerre-Gaussian mode laser generated directly from laser cavity with spherical aberration Quan Sheng ¹ , Tianchang Liu ¹ , Jingni Geng ¹ , Yuanyuan Ma ² , Shijie Fu ¹ , Wei Shi ¹ , Jianquan Yao ¹ , Takashige Omatsu ² , David James Spence ³ ¹ Tanjin University, ² Ohiba University, ³ Macquarie University We present our approach of high-order LG
ICNN6-02 14:00 Invited		LSSE3-03 14:00 Invited	mode laser based on laser cavity with spherical aberration. $LG_{0,\pm m}$ mode output
Study on beam trajectories in distorted	From AR Glasses to Mainstream	The origin of magnetization-caused	with angular indices <i>m</i> selectable from 1 to

Stu photonic crystals

Kyoko Kitamura^{1,2}, Yushin Karasawa², Yuki Kawamoto^{1,2}, Ayano Onishi^{1,2} ¹TOHOKU University, ²Kyoto Institute of Technology We present the distorted photonic crystals

and their peculiar optical beam trajectories.

ICNN6-03 14:30

Ultrastrong Coupling in a hybrid Al/ Cd₃As₂ Terahertz Photonic Structure Zizwe Chase, Tenyu Aikawa, Riad Yahiaoui, Pai-Yen Chen, Thomas Searles

University of Illinois at Chicago Ultrastrong coupling achieved in an optical Fabry-Perot cavity consisting of a quartz slab sandwiched between an Aluminum ribbon and Cd₃As₂ grating for quantum information technology applications.

LDC3-04 14:30

Solutions

Coupling wave optics and human perception simulations to optimize an RGB OLED display

Display Projection — Recent Advances

in red, green and blue LEDs and Laser

Stephan Haneder¹, Benjamin Schulz¹,

Martin Unterburger¹, Florian Rommen¹, Vicknes R. Krishnan², Tsutomo Yazaki³

ams OSRAM International GmbH, ²ams

OSRAM Penang, ³ams OSRAM Japan Ltd

sources for projection displays have shown

usage is ranging from low luminance near to

eye projection for augmented reality glasses

to high brightness mainstream projectors

Over the recent years solid state light

tremendous progress. Their application

Charly Meyer, Sabrina Niemeyer, Sandra Gely, Taylor Robertson, Federico Duque Gomez, Kam Chow, Edward Tong, James Pond Ansys

We propose an optical simulation workflow for RGB OLED displays that combines photonic simulation of the pixel nanostructure with photometric simulation of the display. We run a multi-objective optimization for achieving high performance across competing metrics at the pixel nanoscale then simulate the display with a Human Vision model in an illumination scene.

LSSE3-04 14:30

field-enhanced OER.

Solar to Hydrogen Conversion using 2D-g-C₃N₄/Cu₂O Nanowires Heterojunction Photocathode

increment in water oxidation

Nanyang Technological University

Using external magnetic fields to enhance

magnetic catalysts prompts questions. While

the oxygen evolution reaction (OER) on

spin-polarization in a single magnetic

enhancement remains unknown. Our

improvement under magnetization and

crucial gap in understanding magnetic

explain pH-dependent enhancement, filling a

dioxygen production, the origin of

findings clarify the source of OER

domain was theorized to facilitate triplet

Zhichuan J. Xu

Hyojung Bae^{1,2}, Pratik Mane³, Vishal Burungale², Kailash Chandra Bhamu⁴, Katsushi Fujii⁵, Jin-Woo Ju¹, Jun-Seok Ha^{2,3} ¹Photonics Energy Materials Research Center Korea Photonics Technology Institute, ²Optoelectronics Convergence Research Center Chonnam National University, ³School of Chemical Engineering Chonnam National University, 4School of Chemical Engineering University of Ulsan 5Photonics Control Technology Team RIKEN Center for Advanced Photonics

Considering their outstanding cost-toefficiency ratios, Cuprous oxide (Cu20) is emerging as an ideal photocathode. However, fast charge recombination and low resistance to photo-corrosion limit its practical applications. So, in this conference, we will introduce a graphitic carbon nitride (g-C₃N₄)/2D-Cu₂O nanowires (NWs) with core-shell heterojunction.

OMC3-02 14:05

up to 317 have been obtained.

Whispering gallery mode resonance from self-assembled microspheres with twisted bipolar topology

Yohei Yamamoto, Osamu Oki, Sota Nakayama, Hiroshi Yamagishi University of Tsukuba

We show whispering gallery mode (WGM) resonance from chiral polymer microspheres with twisted bipolar topology, where WGM photoluminescence appears at the selective positions due to the swirl arrangement of the , polymer main chains.

OMC3-03 14:20

Invited

Polarization holography for efficient generation of vector-vortex beams

Boaz Jessie Jackin¹, Sumit Kumar Singh², Kenji Kinashi³, Naoto Tsutsumi³, Wataru Sakai³ ¹Materials Innovation Laboratory, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku Kyoto, 606-8585 Japan, ²Graduate School of Science and Technology, Kyoto Institute of Technology, Sakyo-ku, Kyoto, 606-8585, Japan, 3 Faculty of Materials Science and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku Kyoto, 606-8585 Japan

We propose a simple, scalable and compact device for efficient generation of multiple vector-vortex beams. The device is a polarization hologram fabricated on a azo functionalized copolymer, using a simple interferometric arrangement. Simply illuminating the fabricated hologram with a collimated beam is enough to generate multiple vector-vortex beams, without the need for any additional optics

<u>Oral Program</u>

	~ · - · ·		
OPTM <room 213=""></room>	Oral, Tuesda 0WPT <room 304=""></room>	ay, 23 April PM SLPC <room 416+417=""></room>	XOPT <room 313+314=""></room>
OPTM4-04 11:45		SLPC2-03 11:45	X0PT2-03 11:45
Human Pose Estimation from Noisy Point Cloud Using Unsupervised Learning		Effect of laser irradiation on tungsten- based materials for nuclear fusion applications	The current status of X-ray Micro and Nano-Tomography endsation at Taiwa Photon Source
Chaitali Bhattacharyya, Sungho Kim Yeungnam University 3D computer vision, vital in industries like animation and healthcare, faces challenges with noisy point cloud data from depth cameras, affecting accuracy in human pose estimation. Our paper presents a novel method to accurately estimate poses from such data, enhancing applications in various fields. This breakthrough addresses key issues in 3D pose analysis, offering a reliable solution for diverse industries.		Haotian Yang', Ryo Yasuhara ^{1,2} , Hiroyuki Noto ^{1,2} , Daisuke Nagata ² , Masayuki Tokitani ^{1,2} , Haruki Kawaguchi ^{1,2} , Chihiro Suzuki ^{1,2} , Reina Miyagawa ³ , Hiyori Uehara ^{1,2} ¹ The Graduate University for Advanced Studies, ² National Institute for Fusion Science, ³ Nagoya Institute of Technology A nanosecond Nd:YAG laser was employed to investigate the laser processing properties of W-based materials and evaluate the impact of laser irradiation on the grain structure and mechanical properties of the material.	Gung-Chian Yin, Chien-Yu Lee, Bo-Yi Chen, Yen-Fang Song, Ming-Ying Hsu, Ying-Shuo Tser Shih-Ting Lo, Hsiu-Chien Chan <i>NSRC</i> This presentation will report to you the commission results status of TPS 31A1 Mirco-C projection X-ray microscope (PXM) station, and TPS31A2 Nano-CT, up to the end of 2023 and early 2024. The PXM can provide high-speed computed tomography, fast X-ray imaging, high throughput, and high-energy resolution experiments, while Nano-CT is under commissi The design parameters and most updated result will be reported in this presentation.
Lunch 12:00-13:45		Lunch 12:00-13:15 [SLPC3] 13:15-15:00 Ultrashort Pulsed Laser Processing Chairs: Masaki Hashida <i>Tokai University</i> Masahito Katto <i>University of Miyazaki</i>	Lunch 12:00-13:25
		SLPC3-01 13:15 Invited	
		Ultra-Short Pulsed Laser Ablation of Metals with Burst Pulses: Concepts, Opportunities and Misconceptions Beat Neuenschwander ¹ , Stefan M. Remund ¹ , Daniel J. Foerster ²	[XOPT3] 13:25-14:55 Facility2 + Metrology
		¹ Institute for Applied Laser, Photonics and Surface technologies ALPS, Bern University of Applied Sciences, Switzerland, ² LightPulse	Chair: Diling Zhu SLAC National Accelerator Laborator
		LASER PRECISION, Germany The idea of burst pulses is to divide a high	X0PT3-01 13:25 Invit
[OPTM5] 13:45-15:00 Session 5 Chairs: Matthias Eifler <i>IU International University of Applied</i> <i>Sciences</i> Shin Usuki <i>Shizuoka University</i>	[OWPT1] 13:45-15:00 Session 1 Chairs: Tomoyuki Miyamoto <i>Tokyo Tech.</i> Motoharu Matsuura <i>Univ. Electro-Communications</i>	pulse energy into several individual pulses that follow each other at short intervals (a few 10 ns up to a few 100 ps). Thus, each individual pulse in the burst gets closer to the optimal fluence associated with a maximal conversion of the pulse energy. Compared to a process with high-energy single pulses, the process with burst pulses becomes significantly more efficient at the same laser repetition rate.	Current and Near-Future Nanoscale X-ray Imaging Capabilities at NSLS-II Yong Song Chu, Hanfei Yan, Xiaojing Huang, Ajith Pattammattel, Zirui Gao, Mingyuan Ge, Xianghui Xiao, Evgeny Nazaretski, Nathalie Bouet National Synchrotron Light source II, Brookhaven National Laboratory We present the current and near-future nanoscale x-ray imaging capabilites at
OPTM5-01 13:45 Invited	OWPT-OP 13:45	SLPC3-02 13:45	NSLS-II. The presentation will include an overview of the new beamline developmer

Some Recent Work on Large Depth of Field 3D Microscopic Imaging Using Electrical Tunable Lens Zhang Song, Liming Chen Purdue University

TBD

Opening Remarks Tomoyuki Miyamoto Tokyo Tech.

OWPT1-01 14:00 Power over Fiber as enabler in 6G optical fronthaul

Carmen Vázquez, Rubén Altuna, Javier Barco, David Sánchez-Montero

Universidad Carlos III de Madrid Increasing proposals of using power over fiber (PoF) integrated in optical fronthauling is reviewed along with a discussion of future room envisioned in 6G ecosystem to provide access to everywhere and to be aligned with targeted Key Performance Indicators. Including novel monitoring techniques for safety operation, PoF pooling and space trials

Fabrication of diffraction gratings in glass and in-process monitoring of its diffraction beam

Yuta Nakamura, Satoshi Hasegawa, Yoshio Hayasaki Utsunomiya University

We developed a holographic laser processing machine with the performance monitoring of a target fabrication. The machine also had a rotating stage for the change of the beam parameters over a long period of time.

Plenary SLPC3-03 14:00

Laser processing of transparent materials for laser wakefield electron accelerators

Gediminas Raciukaitis, Migle Mackeviciute, Juozas Dudutis. Valdemar Stankevič. Mehdi Abedi-Varaki, Valdas Girdauskas, Paulius Gečys, Vidmantas Tomkus FTMC - Center for Physical Sciences and Technology

We utilise a combined laser micromachining technology to manufacture complex gas nozzles to tailor the plasma target for laser wakefield accelerators. A two-stage supersonic nozzle was optimised for the injection and acceleration of electrons using a Bessel-Gauss driving beam. The first nozzle is used for the ionisation injection of electrons. The nozzle is for the LWFA acceleration of electrons.

nd wan

ited

-11

overview of the new beamline development plan and the recent progress at NSLS-II.

XOPT3-02 13:55

A Beam-multiplexing Double Crystal Monochromator for LCLS-II-HE

Ying Chen, Rebecca Armenta, Robert Baker, Lin Zhang, Diling Zhu

SLAC National Accelerator Laboratory In this presentation, I will introduce the optical design for a new beam multiplexing scheme planned at the LCLS-II HE for the XPP instrument by introducing transmissive diamond gratings beam splitters.

XOPT3-03 14:10

Deep learning based X-ray Wavefront Sensing methods for Synchrotron and Free Electron Laser

Zhi Qiao1, Xianbo Shi2, Yajun Tong3, Huaidong Jiang⁴ ¹ShanghaiTech Unversity, ²Argonne Natioonal Laboratory, ³ShanghaiTech Unversity,

⁴ShanghaiTech Unversity X-ray wavefront sensing methods with high resolution and high speed are required for high repetition rate and high brightness synchrotron and free electron lasers. By combing the artificial intelligence with speckle tracking, we show that the deep learning based X-ray wavefront sensing method can achieve three orders of magnitude improvement in speed and provide competiable spatial resolution compared with the traditional methods.

NOTE

Oral, Tuesday, 23 April PM

ALPS <Room 303>

ALPS11-04 14:45

Repetition Rate Stability of a Mode-Locked Erbium-Doped Fiber Laser Guoqi Ren, A. Amani Eilanlou, Yusuke Ito, Naohiko Sugita, Atsushi Iwasaki The University of Tokvo

We report a 50.47 MHz, 1549.6 nm narrowband erbium-doped fiber laser oscillator with an unprecedented pulse energy of 140 pJ and only 312 Hz fluctuation of the repetition rate in 7 h of free-running operation.

ALPS11-05 15:00

Programable spectral peak generation from mode-locked Er-doped fiber laser with LCOS-SLM spectral filter Shotaro Kitajima, Sakiko Kobata, Norihiko Nishizawa

Nagoya University

Mode-locked Er-doped fiber laser with an LCOS spectral filter inside the cavity was developed. Multiple spectral peaks generation and the consequent formation of burst pulses directly from the cavity were demonstrated.

----- Coffee Break 15:15-15:30 -----

[ALPS12] 15:30-17:00 Novel solid state / fiber / diode lasers and applications (4) Chair: Anna Ono-Suzuki

Ruhr-Universität Bochum

ALPS12-01 15:30

Attosecond Science with Intense Infrared Sources for Soft X-ray and Condensed Matter

Takayuki Kurihara¹, Tianqi Yang¹, Tomoya Mizuno¹, Nobuhisa Ishil², Takashige Fujiwara³, Teruto Kanai¹, Jiro Itatani¹ *'The University of Tokyo, *Kansai Institutes for Quantum Science, National Institutes for Quantum Science and Technology, ³Riken Center for Advanced Photonics, RIKEN* Phase-stable intense infrared sources are developed to produce soft x-ray attosecond pulses, and ultrafast transient absorption spectroscopy is demonstrated at 400 eV. Mid-Infrared sources are also developed to study strong field-driven phenomena in condensed matter.

ALPS14-03 14:45 Terahertz Spectroscopy for

Distinguishing Calcium Oxalate Hydrates

ALPS <Room 413>

Wangxuan Zhao¹, Verdad C. Agulto¹, Haruto Kobashi¹, Kosaku Kato¹, Mihoko Maruyama¹, Masae Takahashi², Yutaro Tanaka¹, Yusuke Mori¹, Masashi Yoshimura¹, Makoto Nakajima¹ '*Osaka University*, ²*Tohoku University* Terahertz time-domain spectroscopy (THz-TDS) and Fourier transform infrared spectroscopy (FTIR) were employed to analyze calcium oxalate dihydrate and calcium oxalate monohydrate, which are the predominant components of kidney stones.

ALPS14-04 15:00

Ultrafast Detection of Pulse Profiles via Chirped-Pulse Up-Conversion Ryo Tamaki^{1,2}, Miho Fukuoka², Isao Morohashi³, Ikufumi Katayama² ¹KISTEC, ²Yokohama National University, ³NICT In this study, we demonstrate asynchronous ultrafast detection of pulse profiles at telecom wavelength via chirped-pulse

up-conversion with dispersion compensation on a single-shot basis. Spectral interference in the conventional chirped-pulse spectroscopy could be reduced significantly.

ALPS14-05 15:15

LBO-based broadband visible NOPA pumped by Yb:KGW amplifier system

Ahmed Ramadan Ibrahim, Takayuki Kurihara, Teruto Kanai, Jiro Itatani The Institute for Solid State Physics, The University of Tokyo, Japan LiB₃O₅-based NOPA pumped by the third harmonic of a Yb:KGW laser system is constructed. The CEP stable output that covers from 570 to 830 nm with a pulse energy of 8 µJ is achieved.

Invited ALPS14-06 15:30

Transmission experiment of a 300 GHz wave generated by using a soliton comb

Mantaro Imamura', Ayaka Yomoda', Koya Tanikawa¹, Soma Kogure¹, Ryo Sugano¹, Satoki Kawanishi¹, Shun Fujii², Takasumi Tanabe¹ ¹Department of Electronics and Electrical Engineering, Faculty of Science and Technology, Keio University, ²Department of Physics, Faculty of Science and Technology,

Keio University We transmitted a 300 GHz signal generated by a soliton comb at 10 Gbit/s and

demonstrated high-quality data transmission.

ALPS16-03 14:45

Developing control method of acoustic and entropy wave in Gas-Based optics for laser machining

ALPS <Room 511+512>

Yurina Michine, Hitoki Yoneda University of Electro-Communications Investigated control method of acoustic and entropy wave in gas-based optics for laser processing. Under specific condition, entropy wave persist, potentially enabling applications in modulating high-power CW fiber and pseudo-CW lasers.

ALPS16-04 15:00

Laser properties of Nd-doped fluorapatite transparent ceramics Kazuya Takimoto^{1,2}, Hiroyasu Sone¹, Hiroaki Furuse²

¹*Kitami Institute of Technology,* ²*National Institute for Materials Science* The laser oscillation in the 1.3 µm wavelength range using non-cubic

wavelength handback using homeodynium-doped fluorapatite (FAP and S-FAP) ceramics are demonstrated. In addition, efficient operation at 1.0 μm was also studied.

----- Coffee Break 15:15-15:30 -----

[ALPS17] 15:30-16:30 High average power lasers and applications (2) Chair: Hiroaki Furuse *NIMS*

ALPS17-01 15:30

Towards Terawatt-Level Intense Mid-Infrared Lasers Based on Fe:ZnSe Chirped Pulse Amplification

Invited

Shigeki Tokita¹, Daiki Okazaki¹, Tsuneto Kanai¹ Linpeng Yu², Ryo Yasuhara² ¹Kyoto University, ²National Institute for Fusion

 $\label{eq:science} \begin{array}{l} Science \\ \text{We review advancements in mid-infrared} \\ \text{Fe:ZnSe lasers, specifically at 4 } \mu\text{m}, \\ \text{highlighting our approaches to increase the} \end{array}$

highlighting our approaches to increase the laser intensity. This work paves the way for breakthroughs in high-power mid-infrared laser applications.

HEDS <Room 311+312>

HEDS3-05 14:35

Electron Heating by Ion-Weibel Instability in the Presence of Finite Beam-Perpendicular Background Magnetic Field

Taiki Jikei¹, Takanobu Amano¹, Yosuke Matsumoto², Yasuhiro Kuramitsu³ ¹*The University of Tokyo,* ²*Chiba University,* ³*Osaka University*

We discuss the magnetic field amplification and electron heating by ion-Weibel instability. We present a novel dynamo-like amplification mechanism in the presence of a weak but finite background magnetic field. This scenario applies to high-Mach number astrophysical shocks such as supernova remnants.

HEDS3-06 14:50

Cosmic-ray acceleration and maximum energy in a supernova remnant shock propagating in a stellar wind with a wind termination shock

Shoma F. Kamijima¹, Yutaka Ohira² ¹Yukawa Institute for Theoretical Physics, Kyoto University, ²The University of Tokyo

We performed global test particle simulations for cosmic-ray acceleration in core-collapse supernova remnants(SNRs) propagating in the stellar wind and found the cyclic motion between the SNR and wind termination shock, leading to increasing particle energy.

----- Coffee Break 15:05-15:25 -----

[HEDS4] 15:25-17:00 Turbulence & Instability Chair: Masahiro Hoshino

The University of Tokyo

HEDS4-01 15:25 Invited Relativistic Particle Acceleration from Kinetic Plasma Turbulence and Instabilities

Vladimir Zhdankin University of Wisconsin-Madison I will overview recent numerical results from particle-in-cell simulations of turbulent particle acceleration in relativistic plasmas, with varying parameters and driving mechanisms (including macroscopic instabilities), with relevance to high-energy

HEDS4-02 15:50 Invited Spontaneous Plasma Confinement

Transition in Magnetically Confined Fusion Plasmas

Tatsuya Kobayashi^{1,2,3}

astrophysical systems.

¹National Institute for Fusion Science, National Institutes of Natural Sciences, ²The Graduate University for Advanced Studies, SOKENDAI, ³Research Institute for Applied Mechanics, Kyushu University

A long-standing mystery, low-to-high confinement transition was clarified by a detailed measurement of the radial electric field (Er) and turbulence. Across the transition, an edge localized Er structure was spontaneously excited that leaded to transport reduction. The radial charge separation due to different trajectories of ions and electrons was found to play a role for the Er excitation.

ICNN <Room 414+415>

ICNN6-04 14:45

Carrier Leakage in Electrically-Driven Photonic Crystal Membrane Lasers

Mathias Marchal, Nikolaos Chatzaras, Evangelos Dimopoulos, Andrey Marchevsky, Aurimas Sakanas, Marco Saldutti, Kasper Roed Spiegelhauer, Yi Yu, Kresten Yvind, Meng Xiong, Jesper Mørk Denmark Technical University We developed a 2D model of carrier transport in photonic cyrstal lasers that predicts the presence of unconventional leakage paths. This explains experimental observations of low injection efficiencies and enhanced spontaneous emission at doping interfaces

----- Coffee Break 15:00-15:20 -----

[ICNN7] 15:20-16:50 Session 6 Chair: Takashi Asano

Kyoto University

ICNN7-01 15:20

Atomic-scale investigation of photoelectric energy conversion in a single molecule

Miyabi Imai-Imada1,

¹Surface and Interface Science Laboratory, RIKEN, ²JST PRESTO

Photoinduced electron transfer (PET) from an excited molecule is essential in light energy conversion, such as photocurrent generation. Recently, we achieved atomic resolution in photocurrent measurement by combining a scanning tunneling microscope with a tunable laser. The direction and the spatial distribution of the photocurrent show bias-voltage dependency. By detailed analysis, we succeeded to describe the mechanism based on the molecular orbitals.

ICNN7-02 15:50

Unraveling Molecular-Specific Details with Dual-Resonant Infrared Plasmonic Metasurfaces to Probe Dynamic Affinity in Biomolecular Interactions

Tang Dang, Jiaqi Yang, Shuting Ma, Hitoshi Tabata, Hiroaki Matsui *The University of Tokyo*

By specifically tracking the real-time binding process among biomolecules using the SEIRA platform, we can gain insights into the affinity between these biomolecules. This knowledge is valuable for applications such as antibody screening and biomedicine.

OPIC 2024 · 22-26 April, 2024

Oral, Tuesday, 23 April PM

LDC <Room 301>

LDC3-05 14:45

Structured NIR and Yellow-Orange Light Generation from $\chi^{(2)}$ Nonlinear Photonic Crystals

Jie Hua Lai¹, Kai Hsun Chang^{1,3}, Bai Wei Wu¹, To Fan Pan¹, Ming Shun Tsai¹, Hung Hsiang Chiu², Chia Chun Fan¹ Safia Mohand Ousaid³, Azzedine Boudrioua³, Hiroyuki Yokoyama⁴, Eiji Higurashi⁴, Hidefumi Akiyama⁵, Chih Ming Lai⁶, Lung Han Peng^{1,2} ¹Graduate Institute of Photonics and Optoelectronics, National Taiwan University, ²Dept. Elec. Eng. National Taiwan University, Taipei 106, Taiwan, R.O.C., 3Laboratoire de Physique de Lasers CNRS UMR 7538, Université Paris 13, Sorbonne Paris Cité, Villetaneuse, France, ⁴Graduate school of engineering, Tohoku University, Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan, 5The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan, ⁶Electronic and optoelectronic system research laboratories. Industrial Technology Research Institute, Hsinchu, 310401, Taiwan We reported structured beams due to simultaneously multi-optical parametric oscillations (OPO). For the dual-OPO crystal, the paired signal waves at (965, 980) nm were shown to reside on the opposite sides of the cavity mode whose pattern changed elegant Hermite-Gaussian as pump beam scanned over the $\chi^{\scriptscriptstyle(2)}$ nonlinear photonic crystal. Such change in the nonlinear gain profile also introduced visible structured beam in yellow-orange due to cascaded SHG or SFG.

LDC3-06 15:00

Invited

Design of high-power tunable LED illuminant for luminance meter calibration

Urszula Joanna Blaszczak¹, Krzysztof Baran², Marian Gilewski¹, Lukasz Gryko¹, Marcin Lesko², Henryk Wachta², Maciej Zajkowski¹ *Bialystok University of Technology, ²Rzeszow University of Technology* Proposals of the constructions of laboratory standards and sources for various applications based on electroluminescent sources are increasingly popular. This manuscript describes the research on designing the multichannel LED source for photometry. The optimized set of LEDs, composed of 25 channels, reproduces the illuminant A with a mismatch error of 1.58%.

----- Coffee Break 15:15-15:30 -----

[LDC4] 15:30-17:00

Light sources and components 2 Chairs: Tetsuya Yagi Nichia Corporation Yasuaki Hirano Sharp Fukuyama Laser Co.,Ltd.

LDC4-01 15:30

Development of high power GaN laser diode and its applications

Invited

Yasuaki Hirano, Yoshihiko Tani, Hiroshi Kitamura, Sadamu Miyamoto, Akira Ariyoshi Sharp Fukuyama Laser Co., Ltd In recent years, visible semiconductor laser diodes (LDs) have been used in a variety of applications. After that, GaN-based LDs have been investigated and blue and green LDs were developed. In particular, progress has

been made recently in improving the characteristics of GaN-based high-power blue-violet, blue, and green Lbs. This paper introduces improvements of a GaN-based high-power LDs and an example of its development into new application fields.

OMC <Room 418>

OMC3-04 14:35

Direct generation of visible Besselvortex beams from Pr³⁺ fiber laser Yuto Yoneda¹, Allam Srinivasa Rao^{1,2},

Yasushi Fujimoto³, Katsuhiko Miyamoto^{1,2}, Takashige Omatsu^{1,2} ¹*Chiba University* ²*Molecular Chirality Research Center*, ³*Chiba Institute of Technology* We herein demonstrate the direct generation of multicolor (523, 605, 637 nm) first-order

Bessel-vortex modes from a Pr^{3+} water-proof fluoro-aluminate glass (Pr^{3+} :WPFG) fiber laser by utilizing the chromatic and spherical aberrations of the intracavity lens.

OMC3-05 14:50

Manipulation of photonic jets of topological grating via nematic liquid crystal for beam splitter applications.

Harry Miyosi Silalahi¹, Yu-Zhih Chiang², Wei-Fan Chiang², Chia-Yi Huang¹ ¹*Tunghai University*, ²*National Cheng Kung University*

This study demonstrates liquid crystal manipulation of a high-aspect-ratio topological grating for beam splitters. Voltage control dynamically adjusts the refractive index, shifting photonic jets and altering diffraction patterns. This great potential for low-voltage beam splitters in immersive technologies is highlighted.

----- Coffee Break 15:05-15:30 -----

[OMC4] 15:30-17:15

Session 2 Chairs: Quan Sheng

Tianjin University Ryuji Morita Hokkaido University

0MC4-01 15:30 Structured Light for Applications in Solid-state Materials

Yu-Chen Chang, Yu-Chiao Chan, Ting-Hua Lu National Taiwan Normal University This study investigates the interaction between structured light with spin and orbital angular momentum (0AM) and layered MoS₂. Utilizing a spatial light modulator and optical measurement system, the research explores the excitation of 0AM light and its impact on MoS₂, examining responses through photoluminescence and Raman spectroscopy.

OPTM <Room 213>

OPTM5-02 14:15

Development of shadow moiré-based measurement technique for ceramic substrate surface topography measurement

Hunglin Hsieh, Haowen Chia, Yucheng Yang National Taiwan University of Science and Technology

A shadow moiré technique for surface topography measurement is proposed. The proposed technique is developed based on the shadow moiré theory and the fast Fourier transform method, possessing advantages of large area and high resolution

OPTM5-03 14:30 ECG²AN: An rPPG Signal Enhancement

Model for Realistic Signal Generation Seongryeong Lee, Sungho Kim Yeungnam University

This study introduces an ECGAN based on non-contact rPPG to generate ECG signals, mapping facial chrominance signals, overcoming current limitations and demonstrating.

OPTM5-04 14:45	converter applications. As the irradiance increases, the efficiency and economics improves until resistance, heating, or Auger recombination losses begin to dominate. We discuss strategies used to improve InGaAs PV performance at high irradiances.	hybrid polymer-glass and pure polymer separation using femtosecond pulses and non-diffracting beam. The influence of laser parameters on edge surface roughness is discussed. SLPC3-06 14:45	we present preliminary results of AFEL puse assessments using Talbot and Ronchi shearing interferometries. Highlights includes SASE bandwidth wave front retrieval, X-ray focus reconstructions, optimization of phase-correction plate and sensitivity demonstration with hard X-ray pulses.
Prototype of Handheld Full Color 3D Measurement Device Using Linear LED Device and Cylindrical Lens Array Motoharu Fujigaki, Siyan Zhu, Shunsuke Hibino University of Fukui In this study, we prototyped a handheld full color 3D measurement device using a linear LED device and a cylindrical lens array. The exposure time could be shortened because two times brightness fringe pattern against than the conventional method can be projected with the cylindrical lens array. The prototype can take images of phase-shifted fringe patterns at 1000 FPS.		On-Machine Measurement Using Optical Interferometry in Holographic Laser Processing Ren Umetsu, Yoshio Hayasaki, Satoshi Hasegawa <i>Utsunomiya University</i> In general, finding the optimal laser irradiation conditions to obtain the desired structure requires a lot of trial and error for even the most skilled laser operator. In this study, on-machine measurement of the processed structure was proposed for efficient search of laser irradiation conditions.	XOPT3-05 14:40 Wavefront sensing and Optical Simulations: the Swiss-army knife of FERMI Photon Transport. Advances and current trends. Michele Manfredda ¹ , Luka Novinec ¹ , Alberto Simoncig ¹ , Flavio Capotondi ¹ , Emanuele Pedersoli ¹ , Iorenzo raimondi ¹ , Marco Zangrando ¹² ¹ <i>ELETTRA</i> - Sincrotrone Trieste, ² CNR-IOM – Istituto Officina dei Materiali We investigate the application of wavefront sensing to generate and characterize of OAM beams with KB system at FERMI FEL
Coffee Break 15:00-15:30	Coffee Break 15:00-15:30	Coffee Break 15:00-15:15 [SLPC4] 15:15-17:15 Plenary Session Chairs: Masahiro Tsukamoto <i>Osaka University</i> Yuji Sato <i>Osaka University</i>	and of optical simulation to support multicolor FEL experiments. Coffee Break 14:55-15:30 [XOPT4] 15:30-17:00 Optics + Company Chai: Yong Chu National Synchrotron Light source II
[OPTM6] 15:30-16:45 Session 6 Chairs: Markus Cornelius Schake Chairs: Markus Cornelius Schake Physikalisch-Technische Bundesanstalt Motoharu Fujigaki University of Fukui University of Fukui OPTM6-01 15:30 Invited Double-sided interferometer for precise thickness measurements Akiko Hirai, Youichi Bitou National Metrology Institute of Japan (NMIJ) / Advanced Industrial Science and Technology (AIST) A double-sided interferometer (DSI) for No-contact SI-traceable absolute thickness measurement has been developed. The DSI uses the light beams reflected on both	[OWPT2] 15:30-17:00 Session 2 Chair: Shiro Uchida <i>Chiba Institute of Technology</i> OWPT2-01 15:30 Multi-junction photovoltaic laser power converter product developments Simon Fafard, Denis Masson <i>Broadcom</i> Our recent developments for long wavelength and cryogenic OPCs have unlocked record performances. This presentation will review such recent developments including new ~1470 nm OPCs for cryogenic applications with	SLPC4-01 15:15 Invited Ultrashort Pulsed Laser Processing in Liquids Andreas Ostendorf, Philipp Maack, Jan Marx Applied Laser Technologies, Ruhr University Bochum, Germany Processing with ultrashort laser pulses usually has been carried out in ambient or gaseous atmosphere. Processing in liquid environment, however, opens a new window with respect to quality and precision.	XOPT4-01 15:30 Future prospects of high-resolution space X-ray optics with ground-based technologies Ikuyuki Mitsuishi', Koki Sakuta', Kazuki Ampuku', Ryuto Fujii', Yusuke Yoshida', Kumiko Okada', Keitoku Yoshihira', Tetsuo Kano', Naoki Ishida', Wataru Kato', Takafumi Onishi', Yoshitaka Inoue ² , Keisuke Tamura ^{3,4} , Kikuko Miyata ⁵ , Noriyuki Narukage ⁶ , Gota Yamaguchi ⁷ , Shunsuke Ito ⁸ , Shutaro Mohri ⁸ , Takehiro Kume ⁹ , Yusuke Matsuzawa ⁹ , Yoichi Imamura ⁹ , Takahiro Saito ⁹ , Kentaro Hiraguri ⁹ , Hirokazu Hashizume ⁹ , Hidekazu Mimura ^{7,8} ¹ Nagoya University of Maryland, ⁵ Meijo University, ⁶ National Astronomical Observatory Japan, ⁷ IRIKEN' Spring-8, ⁶ The University of

Oral, Tuesday, 23 April PM

OWPT <Room 304>

OWPT1-02 14:30

High-irradiance photoconversion using

Kevin L. Schulte, Sarah Collins, Darin Meeker

National Renewable Energy Laboratory

Photovoltaic devices convert light into

electrical energy at high-irradiance for

thermophotovoltaics and laser power

converter applications. As the irradiance

concentrated solar photovoltaics,

multijunction photovoltaic devices

John F. Geisz, Danial J. Friedman,

Myles A. Steiner, Ryan M. France,

SLPC <Room 416+417>

SLPC3-04 14:15 Stable LIPSS formation on transparent materials by data-driven ultrashort pulse laser processing based on optical in-process monitoring Aiko Narazaki1, Daisuke Nagai Takemichi Miyoshi^{1,2}, Hideyuki Takada¹, Dai Yoshitomi¹, Godai Miyaji² ¹National Institute of Advanced Industrial Science and Technology (AIST), ²Tokyo Univ of Agriculture and Technology We have developed a data-driven USP laser

processing by feedback control of the laser intensity based on a novel optical in-process monitoring toward stable LIPSS formation on transparent materials like glasses.

SLPC3-05 14:30

Invited

Ultrafast laser cleaving of ultra-thin glass and polymers

Bogusz Stepak, Natalia Grudzień, Rafał Smolin, Yuriy Stepanenko, Michał Nejbauer Fluence

We present a new regime for UTG cleaving, providing an excellent edge quality compared to the process based on micro-crack generation. We also show hybrid polymer-glass and pure polymer

X0PT3-04 14:25

Pulse profiles and impressions of Hard X-rav Free Electron Lasers

XOPT <Room 313+314>

Mikako Makita¹, Alexey Zozulya¹ Ulrike Boesenberg¹, Dmitrii Bespalov¹, Victorien Bouffetier^{1,2}, Felix Brausse¹, Christian David³, Joerg Hallmann¹, Talgat Mamyrbayev3, Kohei Miyanishi4, Daniel Mosko⁵, Johannes Moeller¹ Bob Nagler⁶, Motoaki Nakatsutsumi¹, Angel Rodriguez-Fernandez¹, Kristian Sabol⁵, Jan Patrik Schwinkendorf^{1,8}, Frank Seiboth⁷, Roman Shayduk¹ Peter Szeles⁵, Jozef Ulicny⁵, Patrik Vagovic⁷, Wenxin Wang⁷, James Wrigley¹ Mohamed Youssef¹, Toshinori Yabuuchi^{4,9}, Ulf Zastrau¹, Anders Madsen¹ ¹European XFEL GmbH, ²ALBA Synchrotron Light Source, ³Paul Scherrer Institut (PSI), ⁴RIKEN Spring-8, 5 Pavol Jozef Safarik University, 6 SLAC National Accelerator Laboratory, ⁷Deutsches Elektronen-Synchrotron (DESY), 8Helmholtz-Zentrum Dresden-Rossendorf (HZDR), ⁹Japan Synchrotron Radiation Research Institute (JASRI) We present preliminary results of XFEL pulse

Tokyo, "Natsume Optical Corporation We have been developing high-resolution

space X-ray optics with ground- and space-based technologies for space missions and ground plasma experiments.

through the sample. The expanded uncertainty of silicon wafer thickness measurement was evaluated as 20 nm (the coverage factor k = 2).

NOTE

ALPS <Room 303>

ALPS12-02 16:00

High-power Multi-wavelength Diamond Raman Laser

Zhenxu Bai^{1,2}, Hui Chen^{1,2}, Xiaowei Li^{1,2}, Yufan Cui^{1,2}, Yakai Zhang^{1,2}, Feng Gao^{1,2}, Yulei Wang^{1,2}, Zhiwei Lu^{1,2} ¹Hebei University of Technology, ²Hebei Key Laboratory of Advanced Laser Technology and Equipment

An order-controllable multi-wavelength diamond Raman laser was demonstrated that operates across both the infrared and visible spectra. The laser is characterized by its high conversion efficiency and high peak power (up to a hundred kilowatts).

ALPS12-03 16:15

Sub-100 fs high-power Kerr-lens mode-locked GHz-repetition-rate Yb:CYA laser Jie Tao

Xidian University We report on a 1.045-GHz compact diode pumped Yb: CVA laser with an average power of 2.7 W, a pulse width of 74 fs, and a spectral width of 17 nm.

ALPS12-04 16:30

Cavity-Dumped Yb: CALYO Femtosecond Oscillator based on SESAM assisted Kerr-lens mode locking Biao Ba

Xidian University We demonstrate a cavity-dumped diodepumped Yb: CALYO oscillator mode-locked by SESAM assisted Kerr-lens. Pulses with energy up to 230 nJ and 1.2 µJ were obtained at dumping frequency of 1 MHz and 10 kHz, respectively.

ALPS12-05 16:45

High-Repetition-Rate Operation of Short-Pulse CO₂ Laser Pumped by Longitudinal Pulsed Discharge without Pre-ionization

Kazuyuki Uno¹, Ryo Okawa¹, Shohei Watarai², Yasushi Kodama^{1,2}

¹University of Yamanashi, ²Seidensha Electronics

Our short-pulse CO_2 laser, pumped by longitudinal pulsed discharge and operating without the pre-ionization required for gas lasers excited by pulsed discharge, achieved operation at a repetition rate of 1 kHz.

Oral, Tuesday, 23 April PM

ALPS <Room 511+512>

ALPS17-02 16:00

High power mechanically Q-switched green Tb:LiYF4 laser Linpeng Yu¹, Haotian Yang², Hiyori Uehara^{1,2},

Ryo Yasuhara^{1,2} ¹National Institute for Fusion Science, ²The Graduate University for Advanced Studies, SOKENDAI

We demonstrate a mechanically Q-switched Tb:LiYF₄ laser at 544 nm based on an optical chopper. With appropriate chopper settings, $521 + \mu$ J, 86-ns pulses at 1 kHz are generated, corresponding to a peak power of 6 1 kW

ALPS17-03 16:15

Numerical simulation of continuous fiber laser sustained Xe plasma

Yanfei Hu, Qin Sun, Xinbing Wang, Duluo Zuo Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology The laser sustained plasma is numerically simulated by using FLASH, the electron temperature and electron density of the plasma are calculated, and the factors affecting the characteristics of the plasma are analyzed.

HEDS <Room 311+312>

HEDS4-03 16:15

Experimental and Simulation Studies of Richtmyer-Meshkov Instability at High Energy Densities

Zhensheng Dai¹, Shaoyong Tu², Lifeng Wang¹, Meng Li¹

¹The institute of applied physics and computational mathematics, Beijing, China, ²Reaserch center of laser fusion, Mianyang, China

We developed a planar HED platform for Richtmyer-Meshkov at one hundred thousand joule laser facility. 2D and 3D simulations based on radiation hydrodynamics codes are implemented to analyse the mixwidth and radiography data.

HEDS4-04 16:30

Experimental study of the bubble merger process induced by the strong blast-wave-driven RM instability

Zhiyuan Li¹, Meng Li¹, Shaoyong Tu², Zhensheng Dai¹, Lifeng Wang¹, Yingkui Zhao¹ *'Institute of Applied Physics and Computational Mathematics, ²Laser Fusion Research Center, China Academy of Engineering Physics* Bubble merger caused by the hydrodynamic instability is a main pathway for the turbulent transition in the fluids with narrowband initial interface perturbations. We have conducted an experiment about the bubble merger process induced by the strong blast-wave driven Richtmyer-Meshkov(RM) instability at the SG 100kJ laser facility. Our studies show that the mass diffusion effect should be included in the simulations to fit the experiment results.

HEDS4-05 16:45

On the initial linear transient phase in Richtmyer-Meshkov Instability

Francisco Cobos¹, Mario Napieralski², Takayoshi Sano³, Chihiro Matsuoka⁴, César Huete²

¹University of Castilla-La Mancha, ²University Carlos III of Madrid, ³Osaka University, ⁴Osaka City University

It is shown that non-linear models should consider compressible effects happened during the linear transient phase to provide accurate predictions in later stages. An estimation of the duration of this linear transient phase is given.

OMC <Room 418>

Oral, Tuesday, 23 April PM

Invited

ICNN <Room 414+415>

ICNN7-03 16:05

Surface Enhanced Raman Scattering via Plasmonic-Free α - MoO_3 Nanowires Platforms for Biosensing Application

Jiaqi Yang, Tang Dang, Shuting Ma, Hitoshi Tabata, Hiroaki Matsui *The University of tokyo*

We created α -MoO₃ nanowire SERS platforms through catalyst-free synthesis, offering varied heights/compositions by modulating oxygen during laser ablation. Stoichiometric NWs yielded strong SERS (EF 2×10^8) with vivid light scattering. While non-stoichiometric samples show weaker SERS signals due to decreasing scattering following the presence of visible absorptions. This indicates role of electromagnetic enhancement in plasmonic-free α -MoO₃ NW SERS.

ICNN7-04 16:20

Probing Coherent Optical Response of Coupled Excitons and Spin States in a Quantum Dot Molecule

Michelle Lienhart¹, Christopher Thalacker¹, Frederick Bopp¹, Nikolai Bart³, Johannes Schall⁶, Charlotte Cullip¹, Katarina Boos², Friedrich Sbresny², Andreas Wieck³, Arne Ludwig³, Dirk Reuter⁴, Sven Rodt², Stephan Reitzenstein⁵, Kai Müller², Jonathan Finley¹

¹Walter Schottiky Institute, TUM School of Natural Sciences, Technical University of Munich, ²TUM School of Computation, Information, and Technology, Technical University of Munich, ³Faculty of Physics and Astronomy, Ruhr-University Bochum, ⁴Department of Physics, Paderborn University, ⁶Institute of Solid-State Physics, Technical University of Berlin

We explore the coherent response of spatially direct and indirect excitons to a pulsed Rabi drive in a quantum dot molecule. State population is detected off-resonantly via phonon-mediated state transfer. We show that the phonon-mediated relaxation from antibonding to bonding coupled orbitals is spin conserving with a fidelity of >94%.

ICNN7-05 16:35

Nano-Confined Growth of Perovskite Quantum Dots in Transparent Nanoporous Glass

Zhiping Hu¹, Juan Du¹, Zeyu Zhang¹, Fengxian Zhou^{1,2}, Jin He² ¹Hangzhou Institute for Advanced Study.

Pangalou Institute for Advanced Study, University of Chinese Academy of Sciences, ²Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences

Here, the nano-confined growth of perovskite QDs in an optically transparent, robust, and monolithic matrix by using nanoporous glass as a nano-reactor is demonstrated. The nano-channels enable the tunable mono/multi-color emission in full visible range via pore size tailoring or post-halide exchange. Then a rapidresponse and reusable redgreen switching light-emitting diode sensor for halomethanes is demonstrated.

LDC <Room 301>

LDC4-02 16:00

Metasurfaces for reprogrammable beam-steering and light-matter interaction

Hodjat Hajian¹, Matthieu Proffit¹, Yongliang Zhang¹, Pascal Landais², Louise Bradley¹

¹Trinity College Dublin, ²Dublin City University Binary control is implemented in a vanadium dioxide based metasurface for dynamic beam-steering at 1550 nm. Optical and thermal performance demonstrates an electrically driven reprogrammable metasurface, providing continuous beam-steering over a 90° range.

LDC4-03 16:30

are presented.

Design of multi-color laser beam

electro-optic deflection device Shohei Uomi, Takashi Ebara, Yui Otagaki, Hiroshi Murata *Mie University* We propose a new high-speed multi-colored laser beam deflection device using ferro-electric optical crystal with periodically polarization-reversed structures. In this report, the design of electro-optic deflection device for two or three-colored laser beams

LDC4-04 16:45 Memristor-driven micro-LED technology

Seok Hee Hong, Ho Jin Lee, Kang Min Lee, Jin Kyung Lee, Sim Hun Yuk, Tae Geun Kim *Korea University*

Active-matrix micro-LED technology driven by a memristor is realized. Using this technology, alphabet "A" is demonstrated from 12 x 12 micro-LED arrays under pulse amplitude and width modulation via FPGA.

OMC4-03 16:30

3D Orientation Control of Irregular Microparticles Using Adaptive Optical Tweezers

Ryohei Omine¹, Shuzo Masui², Shotaro Kadoya¹, Masaki Michihata¹, Satoru Takahashi¹ 'Dept. of Precision Engineering, The University of Tokyo, ²Institute of Innovative Research,

of Tokyo, ²Institute of Innovative Research, Tokyo Institute of Technology

We proposed and demonstrated the concept of adaptive optical tweezers, which realizes 3D orientation control of irregular

microparticles by automatically adapting the illumination patterns to the observed shapes of microparticles in real time.

OMC4-04 16:45

Automated polarization control for single-mode optical nanofibers

Georgiy Tkachenko^{1,2}, lida Yamato¹, Mark Sadgrove¹

¹Tokyo University of Science, ²University of Bordeaux

We present an all-fiber method for automated control of the polarization state at the waist of single-mode optical nanofibers which are used in many studies on light-matter interaction at sub-wavelength scales.

OMC4-05 17:00

Near-field properties generated by circularly polarized light irradiation on metal nanostructures

Tomoya Oshikiri Oshikiri^{1,2}, Yasutaka Matsuo², Hiromasa Niinomi¹, Keiji Sasaki², Hiroaki Misawa^{2,3}, Masaru Nakagawa¹ ¹Tohoku University, ²Hokkaido University, ³National Yang Ming Chiao Tung University We evaluated a near-field intensity distribution on a series of chiral and achiral gold nanostructures under circularly polarized light irradiation by multiphoton photoemission electron microscopy and numerical simulations.

OMC4-02 16:00

Estimating nonlinear forces, temperature and damping in optomechanical inertial systems

Martin Siler, Alexandr Jonas, Martin Duchan, Vojtech Liska, Tereza Zemankova, Oto Brzobohaty, Pavel Zemanek *Institute of Scientific Instruments of the CAS* We present novel methods for inference of nonlinear optical force, temperature, and damping in optically levitated systems far from thermal equilibrium that use only short and noisy trajectories.

Oral, Tuesday, 23 April PM

OPTM <Room 213>

0WPT <Room 304>

SLPC <Room 416+417>

OWPT2-02 15:45

Temperature Measurements of Laser Power Converters using Luminescence

Drew W Cardwell *PowerLight Technologies* Techniques for measuring junction temperature(s) in laser power converter photovoltaics using electro- and photoluminescence spectroscopy are demonstrated. These techniques enable junction temperature measurements in devices operating under realistic conditions, near the maximum power point.

OPTM6-02 16:00

Implementation of the metrological characteristics framework using additively manufactured material measures

Matthias Effler^{1,2,3}, Julian Hering-Stratemeier^{3,4}, Georg von Freymann^{3,4,5}, Jörg Seewig^{2,3} ¹/U International University of Applied Sciences, Erfurt, Germany, ²Institute for Measurement and Sensor-Technology MTS, RPTU Kaiserslautem-Landau, Kaiserslautern, Germany, ³Opti-Cal GmbH, Kaiserslautern, Germany, ⁴Physics Department and State Research Center OPTIMAS, RPTU Kaiserslautem-Landau, Kaiserslautern, Germany, ⁵Fraunhofer Institute for Industrial Mathematics ITWM, Kaiserslautern, Germany

The new ISO standardization for the calibration, adjustment and performance specification of areal surface topography measuring instruments has been recently released. We describe the opportunities that additive manufacturing of material measures using two photon polymerization provides for the implementation of these standards.

OPTM6-03 16:15

Spin Hall Effect of Light (SHEL) Ellipsometry for surface measurement with different models of optical interface

Naila Zahra^{1,2}, Yasuhiro Mizutani¹, Tsutomu Uenohara¹, Yasuhiro Takaya¹ ¹Osaka University, ²Institut Teknologi Bandung The observation of Spin Hall Effect of Light (SHEL) using weak measurement leads to many application in various field including for precision measurement. This paper proposes SHEL ellipsometry for surface area measurement by raster scanning for smooth optics measurement. Three optics with different material and optical property are inspected.

OPTM6-04 16:30

In-plane 2-dimensional displacement measurement using sinusoidal phase modulation interferometer

Masato Higuchi, Taku Sato, Masato Aketagawa Nagaoka University of Technology We propose a measurement system to observe the wave front change using sinusoidal phase modulation. This system utilizes a high-speed camera and a band-limitless phase meter for 2-dimentinal measurement. In-plane 2-dimensional displacement measurement and laser wave front measurement will be demonstrated.

OWPT2-03 16:00

30 Years of Power by Light Culminate in 10 W LPCs Bound to Shape the Future

Jan Gustav Werthen, Ta-Chung Wu, James Q Liu *Broadcom*

Since first commercialized, the photovoltaic power converter continues to enable a growing number of critical applications requiring 100% galvanic isolation. Since the successful introduction of vertical multijunctions, higher power levels and efficiency have steadily been realized, culminating in the first pigtailed 10 W laser power converter.

OWPT2-04 16:15

Characterizing OWPT Efficiency of An LED Row Transmitter Under Misalignments With The Receiver

Dinh Hoa Nguyen Kyushu University

This paper introduces an analysis for the monotonic dependence of the OWPT efficiency in the air on the distance between the transmitter and receiver planes, where the transmitter is a row of LEDs and the receiver is relatively aligned to the LED row center. A critical value of such inter-plane distance is derived such that beyond which the OWPT efficiency is monotonically decreasing. This is shown to be quite accurate compared to numerical simulation results.

OWPT2-05 16:30

Products and Future Prospects of High-Power Fiber Lasers Masoud Harooni

Invited

SLPC4-03 16:35

Christopher Rock1

same material.

Comparison of Different Laser Powder

Bed Fusion Processes; Microstructure

¹Fitts Department of Industrial and Systems

Engineering, North Carolina State University,

Laser Powder Bed Fusion has been around for decades and there are many OEMs on

investigate material properties and precision

when different systems are used for the

²Center for Additive Manufacturing and

Logistics, North Carolina State University

the market. This presentations will

and Mechanical Properties

Ola L. A. Harrysson^{1,2}, Satya Konala^{1,2} Erik O'Luanaigh^{1,2}, Harvey West II^{1,2},

IPG Photonics

Principles, products, and future prospects of high-power fiber lasers will be explained. These products are promising as light sources for optical wireless power transmission. IPG Ytterbium fiber lasers are the most compact, reliable and energy efficient industrial lasers on the market. SLPC4-02 15:55 Invited Recent Progress of PCSELs for Laser Processing

Susumu Noda

Kyoto University Photonics-crystal surface-emitting lasers (PCSELs) are a new type of laser that possesses both high power and high beam quality, namely, high brightness, while maintaining the merits (compactness, high efficiency, and high controllability) of semiconductor lasers. In this plenary talk, I will discuss the recent progress of PCSELs and their application to laser processing.

XOPT <Room 313+314>

XOPT4-02 15:45

Development of X-ray optics for the solar flare sounding rocket FOXSI-4: ground calibration Kazuki Ampuku¹, Koki Sakuta¹, Ryuto Fujji¹,

Nazuk Anipuka, Konis Gakua, Fryduo Fuji, Yusuke Yoshida, Kumiko Okada', Keitoku Yoshihira', Takafumi Onishi', Yoshitaka Inoue', Keisuke Tamura'4, Kikuko Miyata', Noriyuki Narukage⁶, Gota Yamaguchi⁷, Shunsuke Ito⁸, Shutaro Mohr⁸, Takehiro Kume⁹, Yusuke Matsuzawa⁹, Yoichi Imamura⁹, Takahiro Saito⁹, Kentaro Hiraguri⁹, Hirokazu Hashizume⁹,

Netratio Finaguri, Finitokazu resnizunite, Hidekazu Minura⁷³, Ikuyuki Mitsuishi ¹Nagoya University, ²IMV CORPORATION, ³NASA/GSFC, ⁴University of Maryland, ⁵Maijo University, ⁶National Astronomical Observatory Japan, ⁷INKEN/ SPring-8, ⁶The University of Tokyo, ⁹Natsume Optical Corporation

We have been developing X-ray optics for FOXSI-4. We fabricated two types of X-ray optics specified for soft / hard X-ray observations and conducted X-ray irradiation tests to evaluate X-ray performances. Consequently, we confirmed that the resultant energy dependence of the effective area is consistent with the expected values. We will report the details and the latest status of our optics.

XOPT4-03 16:00

Highly Flexible Coated Hollow Capillaries for Synchrotron Radiation

Jörn Volkher Wochnowski¹, Ryusei Obata^{2,3}, Keisuke Kaneshima^{2,3}, Yoshihito Tanaka^{2,3} ¹Technische Hochschule Lübeck, ²University of Hyogo, ³RIKEN SPring-8 Center

In this talk, hollow light waveguides functionalised from the inside with High-Z metals are presented as highly flexible X-ray-optics for synchrotron radiation. The current results obtained at the RIKEN SPring-8 Center are also reported here.

XOPT4-04 16:15

Synchrotron- and substrate-induced modifications on beamline optical elements

Roberta Totani, Matteo Altissimo, Nicola Novello, Anna Bianco, Edoardo Busetto, Lorenzo Raimondi *Elettra Sincrotrone Trieste*

We will show a study on two damaged optical element systems, from the Elettra synchrotron and the FERMI free electron laser facilities. The investigation was realized by means of Interferometry, AFM, XRD, Raman and IR Spectroscopy. The obtained results help understanding nature and causes of the damages and thus selecting the most suitable solutions to get rid of, or directly avoid them.

XOPT4-05 16:30

Invited

Unlocking New Horizons in Xray Optics with High Aspect Ratio Structures

Adam Kubec, Jan Erjawetz, Ethouba Al-Jassin, Florian Sander, Damien Eschimese, Florian Döring XRnanotech GmbH

We explore novel deep-etched Silicon applications which can be used for X-ray with aspect ratios well above 200 with smallest feature sizes below 100 nm. This technology will impact manufacturing of refractive lenses, diffractive optics resolution test target and resolution test targets and will open a new avenue for a various applications.

X0PT4-06 16:45

High Efficiency X-ray Optics for Laboratory Instrumentation and Applications

Tomorni Ogaki¹, Wenbing Yun², Sylvia JY Lewis², SH Lau² ¹Canon Marketing Japan, Inc., ²Sigray, Inc. The optics produced by Sigray include ellipsoidal or paraboloidal designs with single or double bounce to direct the x-ray beam on to the sample. As an application of semiconductor device, the x-ray assisted device alteration (XADA) system has been developed by the double paraboloidal mirror lens and the highbrightness x-ray microbeam system. In this study, we report the recent results by the ellipsoidal and the double paraboloidal mirror lens.

NOTE

BISC <Room 419>

HEDS < Room 311+312>

[BFSS-OP] 8:50-9:00

Opening Remarks Chair: Rie H. Kang *GPI*

[BFSS1] 9:00-10:20

Business and Finance in Photonics Industries Chairs: Ryohei Hanayama

BFSS <Room 413>

GPI Yasushi Masuda GPI

BFSS1-01 9:00

Laser Surface Treatment for Sustainable Maintenance of Steel Structures

Kazuhisa Fujita¹, Kazuhisa Fujita² ¹*The Graduate School for the Creation of New Photonics Industries,* ²*TOVOKO Inc.* This paper reviews a groundbreaking laser technology and standardizations for social implementation, which offers a novel approach to surface treatment for steel structures such as bridges. Maintenance process involves removing old paint, rust, and salt deposits that lead to corrosion. A new laser surface treatment method employing high-power CW (continuous wave) lasers has been developed, offering an effective solution for salt removal.

BFSS1-02 9:20

Exploring Corporate Entrepreneurship in the Photonics Industry: Assessing Internal Environments and Organizational Characteristics

Masanori Ito, Rie H Kang The Graduate School for the Creation of New Photonics Industries

This study aims to assess the applicability a tool for evaluating the internal environment promoting entrepreneurship, within new business development department of photonics industry companies and determine if it reflects the specific environment of these target companies. The results of the psychometric assessment suggest the possibility of identifying characteristics specific to new business development departments and photonics industry companies.

BFSS1-03 9:40

A Study of the Process of Co-creation Emergingin New Product Development: Considerations from Practical Cases in the Photonics Industry

Kentaro Goto¹, Yasushi Masuda² ¹Shizuoka University, ²The Graduate School for the Creation of New Photonics Industries The study aims to clarify the process of co-creation emerging in new product development. Therefore, we analyze the practical cases in the photonics industry and use Natural-Born Intelligence (NBI) and Small Self-Actualization (SSA) models as analytical concepts. We clarify the process of NBI co-creation emerging in collaborative research on new product development and indicate the applicability of the principle of superposition in a practical case.

[BISC1] 10:00-11:00

Kobe University

healthy tendon functions via

Non-invasive in vivo assessment of

Hsiao-Chun Amy Lin¹, Ivana Ivankovic^{2,3}, Ali Ozbek^{2,3}, Ana Orive^{2,3}, Xose-Luis Deán-Ben^{2,3}, Daniel Razansky^{2,3}

¹National Tsing Hua University, ²ETH Zurich,

This study reports on non-invasive human

real-time volumetric multispectral optoacoustic

tomography; revealing anatomical structure,

biomechanical function, haemodynamic and

tendon assessments using hand-held,

oxygenation response to exercise.

Multispectral Optoacoustic Tomography

Chair: Osamu Matoba

BISC1-01 10:00

³University of Zurich

Session 1

BFSS1-04 10:00

Beginning of social implementation of research results by researchers in the organization - Transformation of Thinking and Action -

Yoshinori Matsui^{1,2}, Yasushi Masuda¹ ¹The Graduate School for the Creation of New Photonics Industries, ²Hamamatsu Photonics K.K. This paper describes the process of change in the thinking and actions of researchers in organizations when they try to implement their research results in society, by using self-ethnography, which is a research method of the researcher looks deeper into the interaction between self and others by describing and recursively reflecting on his/ her own research and action procedures. [HEDS5] 9:00-10:05 Magnetic Reconnection 1 Chair: Hantao Ji

Princeton University

HEDS5-01 9:00

Nonthermal Particle Acceleration Efficiency of Magnetic Reconnection in Various Plasma Environments

Invited

Masahiro Hoshino The University of Tokyo

Magnetic reconnection has long been known to be the most important mechanism for dissipating magnetic field energy into plasma heating and nonthermal particle acceleration.

HEDS5-02 9:40

Invited

Invited

Testing Plasma Physics with Multiwavelength Observations & Radiative MHD Simulations of Solar Flares Mark C. M. Cheung

CSIRO Space & Astronomy Remote sensing of the Sun across the electromagnetic spectrum provides important constraints on a range of (astro) physical phenomena, including magnetic reconnection, magnetised shocks, dynamo action, magnetohydrodynamic turbulence, particle acceleration, solar/stellar flares, and more. In this talk, we will explore a few of these topics with data from spaceborne and ground-based observatories, using them to evaluate state-of-the-art numerical models.

----- Coffee Break 10:05-10:25 -----

Oral, Wednesday, 24 April AM IP <Room 302> LDC <Room 301> LEDIA <Room 211+212>

[IP-OP] 9:10-9:15 Opening Remarks Chair: Koichi Nitta Kobe University

[IP1] 9:15-10:15

VR/Display 1 Chairs: Satoshi Hasegawa Utsunomiya University Daisuke Sakai Kitami Institute of Technology

IP1-01 9:15

Improving the optical efficiency of volume-holographic-optical-element based exit-pupil-expansion

Invited

Yeh-Wei Yu, Chung-Wei Lin, Chih-Yao Chang, Yu-Chien Wang, Ching-Cherng Sun, Tsung-Hsun Yang

National Central University/Department of Optics and Photonics

The volume-holographic-optical-element shows advantages based on multiplexing capability. However, it uses broad bandwidth of the light source to expand its field of view. So, we adjust the input wavelength distribution to improve the system efficiency. [LDC5] 9:00-10:45 Light sources and components 3 Chairs: Hidekazu Hatanaka Ushio Atsushi Satou Iwasaki Electric

LDC5-01 9:00

High-performance quantum dot lasers

for optical fiber systems Kouichi Akahane¹, Atsushi Matsumoto¹, Toshimasa Umezawa¹, Ryota Yabuki², Yuichi Matsushima², Katsuyuki Utaka², Satoshi Yanase³, Tomohiro Maeda³, Hideyuki Sotobayashi³, Naokatsu Yamamoto¹ '*NICT, ²Waseda University, ³Aoyama Gakuin University*

This study introduces quantum-dot (QD) lasers operating in the telecom band. The special features of temperature stability of the threshold current, and narrow linewidth of the QD distributed-feedback laser, and wideband optical frequency comb, and ultrashort pulse generation by mode-locked QD lasers were achieved. In addition, the temperature stability of the emission wavelength of the QD laser was demonstrated using bismuth material.

LDC5-02 9:30 Invited MicroLEDs & Heterogeneous Integration: Enabling next-generation

applications

Brian Corbett, Muhammet Genc, Abhinandan Hazarika, Brendan Roycroft, Zhi Li *Tyndall National Institute, University College Cork*

Miniaturizing inorganic LEDs to sub-100 microns unlocks opportunities in compact displays, high-bandwidth communication, and optogenetics. We highlight our advancements, including the release and integration of these miniaturized LEDs onto diverse substrates using micro-transfer printing. [LEDIA1] 9:00-10:35

Chair: N. Okada Yamaguchi Univerisity

Invited LEDIA-OP 9:00

Opening Remarks H. Amano *Nagoya University*

LEDIA1-01 9:05 Invited Disinfection of Water using UV-LED

Kumiko Oguma *The University of Tokyo*

LEDIA1-02 9:35

3Meijo University

electron blocking laver.

UV-LED is effective to disinfect water. The presentation will cover the laboratory-scale UV-LED studies targeting microorganisms in water, as well as the field demonstration and implementation of UV-LED reactors at water supply systems in practice.

Short-term degradation mechanisms

of 275-nm-band AlGaN quantum well

deep-ultraviolet light emitting diodes fabricated on a sapphire substrate Shigefusa F Chichibu¹, Koji Okuno², Masaki Oya², Yoshiki Saito², Hisanori Ishiguro³,

Tetsuya Takeuchi³, Kohei Shima¹ ¹Tohoku University, ²Toyoda Gosei Co. Ltd.,

Short-term degradation until 102 h of

decrease in carrier injection efficiency

caused by the depassivation of initially

275-nm-band AlGaN-based deep-ultraviolet

H-passivated point defects in the Alo 85 Gao 15 N

light-emitting diodes was attributed to the

IP1-02 9:45

Design and Fabrication of AR Display Systems Using Freeform Holographic Optical Elements

Tong Yang, Yongdong Wang, Dongwei Ni, Dewen Cheng, Yongtian Wang *Beijing Institute of Technology* We demonstrate the design and fabrication of AR display systems using freeform holographic optical elements, which have strong wavefront modulation ability. Advanced system parameters and ultra-compact system structure of AR display systems can be obtained.

IP1-03 10:00

Light field display voxel map acquisition using incoherent holographic camera

Youngrok Kim, Dongwoo Seo, Wonseok Son, Sung-Wook Min Kvuna Hee University

We draw a voxel map that visualizes the expressible depth range according to the viewing angle of light field displays. We exploit an incoherent holographic camera to estimate the distribution of light rays.

LDC5-03 10:00

Superluminescence: Best characteristics of LEDs and Lasers Brian Corbett, Muhammet Genc,

Abhinandan Hazarika, Brendan Roycroft, Juan Morales, Gerard O'Carroll, Zhi Li *Tyndall National Institute, University College Cork*

We describe results on blue and red wavelength superluminescent LEDs with broad spectral linewidth, mitigating speckle concerns in illumination. Innovative substrate-emitting SLEDs achieve high power in pulsed mode, suitable for beam scanning display applications.

LEDIA1-03 10:05 Invited Technology development for long life and high efficiency DUV LEDs

Yoshiki Saito¹, Atsushi Miyazaki¹, Shinya Boyama¹, Koji Okuno¹, Masaki Oya¹, Keita Kataoka², Tetsuo Narita², Kayo Horibuchi², Maki Kushimoto³, Yoshio Honda³, Hiroshi Amano³, Hisanori Ishiguro⁴, Tetsuya Takeuchi⁴, Kohei Shima⁵, Shigefusa F Chichibu⁵ ¹Toyoda Gosei Co., LTD., ²Toyota Central R&D Labs., Inc., ³Nagoya University, ⁴Meijo University, ⁵Tohoku University Efficiency improvements in AlGaN-based deep ultraviolet (DUV) light-emitting diodes (LEDs) are expected to enable complete replacement of mercury lamps in the future.

Invited

LSSE <Room 316>

[LSSE4] 9:00-10:30 Industrial Application & Neuclear Application 1

Chairs: Akihiko Nishimura JAEA Noboru Hasegawa QST

LSSE4-01 9:00

Metal recovery from liquid wastes by pulsed laser-irradiation Hironori Ohba^{1,2}, Ryuzo Naknishi², Morihisa Saekiⁱ

¹Japan Atomic Energy Agency (JAEA), ²National Institutes for Quantum Science and Technology (QST)

Utilizing the fundamental process of laser-matter interaction, we performed elemental separation using laser-induced particle formation technology to recover precious metals from industrial liquid wastes

LSSE4-02 9:30

Fiber-coupled acoustic wave-assisted microchip LIBS system for elemental composition and surface imaging of nuclear fuel debris

Munkhbat Batsaikhan, Hironori Ohba, Katsuaki Akaoka, Ikuo Wakaida Japan Atomic Energy Agency

A fiber-coupled acoustic wave-assisted microchip LIBS system for elemental composition and surface imaging was developed and tested on surrogate debris samples

Oral, Wednesday, 24 April AM

OMC <Room 418>

[OMC5] 9:00-10:15

Session 3 Chairs: Masaaki Ashida Osaka University Tyler Neely University of Queensland

Invited OMC5-01 9:00

Invited **Orbital Angular Momentum: New Directions for Sensing and**

Manipulation Kishan Dholakia

University of Adelaide Australia Light beams possessing orbital angular momentum are used for an ultra-compact, microfluidic refractive index sensor based on measurement of the azimuthal index. The approach has a resolution that may exceed 10-5 RIU.

Invited OMC5-02 9:30

2-dimensional direct print of active materials by optical vortex induced forward transfer Kaito Sato¹, Tetsuya Fukuda¹,

Ken-ichi Yuyama², Mitsumasa Hanaoka¹, Katsuhiko Miyamoto¹, Takashige Omatsu Chiba University, ²Osaka Metropolitan Univesitv

We demonstrate the direct print of active materials colloidal suspension by utilizing the optical vortex induced forward transfer. This demonstration allows the fabrication of freeform printed microchannels for study of active materials living dynamics.

OMC5-03 9:45

Visualizing three dimensional dynamics of quantized vortices in superfluid helium

Yosuke Minowa, Yuki Yasui, Masaaki Ashida Osaka University

We demonstrated the 3-dimensional visualization of quantized vortices in superfluid helium with silicon nanoparticles. Silicon nanoparticles were formed and dispersed in situ with pulsed laser ablation in the superfluid helium. By combining two images of an identical quantized vortex, each taken from a different direction, we reconstructed a three-dimensional structure of the quantized vortex.

LSSE4-03 10:00

Research and Development of Heat **Resistant FBG Sensors for Reactor Decommission and its Related Applications - version 2024**

Akihiko Nishimura^{1,2}, Tsugio Ide³, Nobuyuki Ishihara³, Koji Takasaki¹ ¹Japan Atomic Enery Agency, ²Univ. Fukui, ³deltafiber.ip

Heat/radiation resistant FBG sensing was demonstrated at the exhibition booth of Japan Society of Maintenology 2023 at Tohoku University promoted by deltafiber.jp. The progress will be presented in OPIC-LSSE 2024.

Invited OMC5-04 10:00

Analysis of enhanced photoluminescence in plasmonic nanocavity-molecule coupled system based on nonlocal response theory Yoshitsugu Tomoshige1, Mamoru Tamura1,2

Hajime Ishihara1 ¹Osaka University, ²Osaka Metropolitan University

Plasmonic nanocavity is crucial for enhancing the interaction between nanomaterials and light. We show it is possible to discuss the photoluminescence spectrum with Rabi splitting using our theory.

[OWPT3] 9:30-10:30 Session 3

Chair: Takeo Maruvama Kanazawa Univ.

OWPT3-01 9:30 The First Demonstration of Laser

Power Beaming in Orbit

Special

OWPT <Room 304>

Paul Jaffe¹, Elias Wilcoski¹, Chris DePuma¹, Ellen Wagner¹, David Chen², James Baughman³ ¹U.S. Naval Research Laboratory, ²University of Virginia, 3 Gulfview Research, Inc.

This paper summarizes the results of the first instance of laser power beaming in space. The experiment demonstrated the highest power received (2.49 W), longest distance traversed (1.45 m), and highest end-to-end efficiency (12.4%) of any demonstration in orbit.

OWPT3-02 10:00

Design of the cell connection configuration of photovoltaic panel using an optimization algorithm Natsuha Ochiai, Kazuto Kashiwakura,

Yohei Toriumi, Yukiko Suzuki, Toru Tanaka NTT Space Environment and Energy Laboratories

To improve the conversion efficiency, we investigated the use of an optimization algorithm for the cell connection configuration of the photovoltaic device. We confirmed effectiveness of the optimization design

SLPC <Room 416+417>

[SLPC5] 9:00-10:15 **Micro Nano Processing 2**

Chairs: Mizue Mizoshiri Nagaoka University of Technology Godai Miyaji Tokyo University of Agriculture and Technoloav

SLPC5-01 9:00

Optical data recording in silica for the sustainable archival cloud storage Masaaki Sakakura, Patrick Anderson,

Erika B. Aranas, Richard Black, Marco Cabellero, Burcu Canakci, Andromachi Chatzieleftheriou, James Clegg, Daniel Cletheroe, Tim Deegan, Austin Donnelly, Rokas Drevinskas, Ariel Gomez Diaz, Teodora Ilieva, Russell Jovce, Sergey Legtchenko, Antony Rowstron, Nina Schreiner, Ioan Stefanovici, David Sweeney, Charles Whittaker, Hugh Williams, Stefan Winzeck Microsoft Research Cambridge

Nano-structuring in silica using femtosecond laser enables cost-effective long-term storage for sustainable cloud service in the era of data explosion. We will discuss how the technology will make the archival storage in the next generation.

SLPC5-02 9:30

Realization of form birefringent structures in polymers using femtosecond laser processing Darius Gailevicius², Domas Paipulas²

Maciej Kretkowski¹, Saulius Juodkazis³, Vygantas Mizeikis Shizuoka University, ²Vilnius University,

3Swinburne University of Technology Form birefringence is important in photonics because it allows one to control polarization state of light using compact structures made of non-birefringent materials. Here we report on realization of form birefringent phase retarder structures working at visible wavelengths using 3D laser printing in polymeric photoresists. Realization of compact structures exhibiting high phase retardation at visible wavelengths is demonstrated.

SLPC5-03 9:45

Selective Generation of Cu Electrodes on Ultra-Thin Glass by Femtosecond Laser Reductive Sintering of CuO Kay Bischoff¹, Tim Ehmes¹, Cemal Esen²,

Ralf Hellmann¹ ¹Applied Laser and Photonics Group. University

of Applied Sciences Aschaffenburg, ²Applied Laser Technologies, Ruhr University Bochum

This contribution demonstrates and specifies the maskless, vacuum-free, and flexible electrification of ultra-thin glass using femtosecond reductive laser sintering of highly dispersed CuO nanoparticle-based precursors for the fabrication of conductive copper electrodes.

SLPC5-04 10:00

Low-power Laser Coloration by Oxidation and Deformation of Selfassembled AL-PS Nanosphere Arrays Maxim Elizarov, Ning Li, Fei Xiang,

Andrea Fratalocchi King Abdullah University of Science and

Technology We introduce an approach for low-power (10 mW), high-resolution (33k DPI), wide-gamut laser coloration on a pre-processed metamaterial of self-assembled

nanoparticles. Controllable material oxidation and deformation allows optical response tuning by CW laser.

Oral, Wednesday, 24 April TILA-LIC <Room 315> XOPT <Room 313+314>

[XOPT5] 9:00-10:15

[TILA-LIC1] 9:00-10:30 **Opening & ATLA Project - 1** Chairs: Nicolaie Pavel

National Institute for Laser, Plasma and Radiation Physics - INFLPR, Magurele Romania Takunori Taira RIKEN SPring-8 Center, Sayo-gun, Japan

Invited TILA-LIC1-01 9:00

power lasers.

DFC-chip Tiny Integrated Laser. Takunori Taira

RIKEN SPring-8 Center, Japan A compact power laser is attractive for laser-driven particle acceleration to open new door of the high energy physics, and industrial power laser applications. The potential of DFC (distributed face cooling)chip for tiny integrated laser will be discussed as the next generation compact

TILA-LIC1-02 9:30 Yb Disk and DFC Laser for Intense THz Generation

Mitsuhiro Yoshida¹, Rui Zhang¹, Xiangyu Zhou¹, Arvydas Kausas², Hideki Ishizuki²,

Takunori Taira² ¹High Energy Accelerator Research Organization, ²RIKEN RSC

The MgO:PPLN is currently best candidate for intense THz generation using both of the DFG and chirp and delay method. Yb disk and DFC(Distributed Face Cooling) laser are developed for the two wavelength laser or chirped pulsed laser for the DFC and chirp and delay respectively.

TILA-LIC1-03 9:45

Dual wavelength generation using degenerated optical parametric system with multiplexed reflective VBG

Kei Takeya^{1,2}, Vincent Yahia^{1,2}, Hideki Ishizuki^{2,1}, Takunori Taira^{2,1} Institute for Molecular Science, ²RIKEN

SPring-8 Center We have demonstrated that a degenerated optical parametric system with multiplexed reflective Volume Bragg grating can generate two-wavelength excitation light for wavelength conversion. By using the degenerated optical parametric system, we were able to convert 1064 nm light from

Nd:YAG light into 2126 nm and 2130 nm two-wavelength light with a line width of less than 1 nm. The intensity was a few mJ.

TILA-LIC1-04 10:00

Commercial products associated to Micro Solid-State Photonics and Tiny Integrated Lasers Hiroyuki Takigami^{1,2,3}

¹RIKEN SPring-8 Center, ²TILA-consortium, ³Micro Solid-State Association

Commercial products related to Micro Solid-State Photonics and Tiny Integrated Lasers will be introduced from several companies associated with TILA-consortium, which is is made up of general members, from companies and other organizations, and offers value chain activity across industry, government, and academia.

Kevnote XOPT5-01 9:00

Chair: Satoru Egawa

The University of Tokyo

Mirror

Removal of systematic errors in metrology for ultra-accurate x-ray mirrors

Invited

AM

Josep Nicolas, Albert Van Eeckhout, Igors Sics, Dominique Heinis

ALBA Synchrotron Light Source

We present numerical methods for the data analysis of metrology insturments like NOM and stitching interferometers, aimed at removing the systematic errors that limit their accuracy. We analyze the methods and provide experimental results.

X0PT5-02 9:30

Development of stitching

interferometry and ion beam figuring methods for high precision X-ray mirrors

Qiushi Huang Tongji University

X-ray mirrors with high precision are studied using stitching interferometry and ion beam figuring. Flat mirrors with maximum length of 500mm and elliptical mirror were manufactured with around 1 nm (RMS) accuracy.

XOPT5-03 9:45

Ultracompact Kirkpatrick-Baez mirror for forming 20-nm achromatic soft-X-ray nanoprobes

Takenori Shimamura^{1,2}, Yoko Takeo^{1,2}, Fumika Moriya³, Takashi Kimura¹, Mari Shimura^{4,5}, Yasunori Senba^{2,4}, Hikaru Kishimoto², Haruhiko Ohashi^{2,4}, Kenta Shimba³, Yasuhiko Jimbo³, Hidekazu Mimura⁶ ¹The Institute for Solid State Physics, The University of Tokyo, ²Japan Synchrotron Radiation Research Institute, ³School of Engineering, The University of Tokyo, ⁴RIKEN SPring-8 Center, ^₅Department of Intractable Diseases, Research Institute, National Center for Global Health and Medicine, 6Research Center for Advanced Science and Technology, The University of Tokyo A pair of ultracompact mirrors in the Kirkpatrick-Baez geometry produced unprecedented sub-50-nm achromatic soft-X-ray probes. Bicolor nanoprobes with 1- and 2-keV soft-X-rays were generated using this mirror to enhance and observe soft-X-ray fluorescence.

X0PT5-04 10:00

Analytical and Simulation investigation of scattering effects induced by surface defects on X-ray mirrors

Lorenzo Raimondi, Matteo Altissimo Elettra-Sincrotrone Trieste This work discusses the degradation of the PSF due to the scattering induced by mirror surface defects in grazing incidence geometry, from Extreme Ultra Violet to Hard X-ray photon energies. The issue is discussed by comparing a first-order scattering theoretical approach and simulations performed with the main optical simulators present in the Oasys framework.

	Oral, Wednesda	ay, 24 April AM	
ALPS <room 511+512=""></room>	BFSS <room 413=""></room>	BISC <room 419=""></room>	HEDS <room 311+312=""></room>
	Coffee Break 10:20-10:40		
			[HEDS6] 10:25-11:45 Magnetic Reconnection 2 Chair: Taichi Morita <i>Kyushu University</i>
[ALPSp1] 10:30-12:00 ALPS Poster Session 1		BISC1-02 10:30 Flexible-sampling Raman probe system:	HEDS6-01 10:25 Invit Electron Acceleration and Ion Acoust Waves during Low-Beta Magnetic Reconnection using Laser-Powered Capacitor Coils
<pre><exhibition a="" hall=""></exhibition></pre>	[BFSS2] 10:40-11:40	On-demand spatial and spectral analysis of biological specimens Yasuaki Kumamoto ¹ , Wataru Sakata ¹ ,	Hantao Ji ^{1,2} , Lan Gao ² , Geoffrey Pomraning ¹ , Kentaro Sakai ³ , Fan Guo ⁴ ¹ Princeton University, ² Princeton Plasma
	Business and Finance for Sustainable Society Chair: Rie H. Kang <i>GPI</i>	Katsumasa Fujita ^{1,2} ¹ Osaka University, ² National Institute of Advanced Industrial Science and Technology We developed a flexible-sampling Raman	Physics Laboratory, ³ National Institute for Fusion Science, ⁴ Los Alamos National Laboratory Magnetic reconnection is a ubiquitous
	BFSS2-01 10:40 A Study on the Creation of New	probe system for on-demand spatial and spectral analysis of biological specimens, which can be useful for navigating	fundamental process in astrophysical plasmas and has been studied at low beta using a platform based on laser-powered strong coil currents on electron acceleratio
	Industries Using Optical Technology in Shinkin Banks Akifumi Ishii	peripheral nerve preservation surgeries.	and ion acoustic waves.
	Hamamatsu lwata Shinkin Bank To examine what kind of financial solutions Shinkin banks can provide for the creation of new industries utilizing optical technology, this study conducted an interview survey of 10 people affiliated with universities and	BISC1-03 10:45 Enhanced ROS Generation of Ni0:Pd Nanoenzymes via Laser-irradiated Photo - chemodynamic Therapeutics Ze Jiung Huang, Zhi Bin Zhang,	HEDS6-02 10:50 Invit
	private companies related to optical technology, who will be the leaders in the creation of new industries.	Chih Chia Huang National Cheng Kung University Novel NiO:Pd nanoenzyme boosts ROS for efficient bladder cancer cell eradication via enhanced catalytic and photothermal properties, marking a breakthrough in combined therapy for tumor immune reversion.	Relativistic electron injection acceleration in laser-driven magnetic reconnection plasmas Jiayong Zhong Faculty of arts and sciences, Beijing Normal University The standard gamma-ray burst (GRB) prompt emission model is the internal sho (IS) model. The internal collision-induced
	BFSS2-02 11:00	Coffee Break 11:00-11:15	magnetic reconnection and turbulence (ICMART) model is acceptable to overcome these criticisms in theoretical and physica
Poster session program p.138-	Visualization of Non-financial Information -A Case Study of a Japanese B to B Company- Norio Sakurai <i>Tokyo International University</i> This research highlights Mitsui Chemical Co., Ltd., a traditional Japanese B to B company, as a case study and examines why the company's non-financial information disclosure is highly evaluated by institutional investors.		scenarios. Here, we partially and experimentally investigate the feasibility o this model by using intense laser facilities
		[BISC2] 11:15-12:00 Session 2 Chair: Izumi Nishidate Tokyo University of Agriculture and Technology	
		BISC2-01 11:15 Invited	HEDS6-03 11:15
	BFSS2-03 11:20 Impact of Institutional Investors on	Biophotonics in Defense Medicine Shunichi Sato National Defense Medical College Research Institute, Japan In this paper, we describe some important applications of biophotonics to defense/ militeru medicine. Little coloresi no uniscuo	Turbulent magnetic reconnection generated by intense lasers and electron acceleration Yongli Ping <i>Beijing Normal University</i> We report the turbulent magnetic
	Corporate Biodiversity Responses Junichi Hayashi Aoyama Gakuin University Performing a logit analysis of data from Japanese companies to examine the impact of institutional investors on companies' biodiversity responses, we found that companies that engage in a dialogue with the institutional investors are more likely to disclose their biodiversity responses, that is, make disclosures under Task Force on	military medicine. Light or laser is a unique physical energy that is least invasive and enables versatile interactions with living tissue and cells. There would be many other potential applications not only for medicine in peacetime but also for medicine in emergency situations.	reconnection process in the laser-driven solid targets experiment with formation of fragmented current sheet in this paper. Th it is shown that the parallel electric field dominates electron acceleration in the turbulent magnetic reconnection processe while the betatron mechanism plays a cooling role.

Oral Program

	Oral, Wednesda	ay, 24 April AM	
ICNN <room 414+415=""></room>	IP <room 302=""></room>	LDC <room 301=""></room>	LEDIA <room 211+212=""></room>
	Coffee Break 10:15-10:45	LDC5-04 10:15 Study of saturation effects in Ceramic phosphors for high-power laser lighting Yoshio Manabe, Hiroshi Fuji, Kana Fujioka, Kazuhisa Yamamoto <i>Osaka University</i> We investigated the saturation behavior of phosphor emission due to laser excitation. It was found that the saturation behavior of sample is related to the optical propagation of laser light.	
[ICNNp] 10:30-12:00 ICNN Poster Session <exhibition a="" hall=""></exhibition>		LDC5-05 10:30 Improved ternary-composite-ceramic phosphors for warm-white laser lighting Hisashi Minemoto ¹ , Kana Fujioka ¹ , Hiroshi Fuji ¹ , Kazuhisa Yamamoto ¹ , Tsuneo Kusunoki ² , Seika Tokumitsu ² , Hideo Kawabe ² ¹ Institute of Laser Engineering, Osaka University, ² New material center, OXIDE Corporation	Coffee Break 10:35-10:40 [LEDIA2] 10:40-11:25 UV devices (1) Chair: S. F. Chichibu <i>Tohoku University</i>
	[IP2] 10:45-12:00 VR/Display 2 Chair: Hiroyuki Suzuki <i>Gunma Univ., Japan</i> IP2-01 10:45 A lightfield type near eye display based on a pinhole array with extended range of eye pupil sizes using polarization-multiplexed retinal projections	We propose improved ternary-composite- ceramic phosphors for warm-white laser lighting. Type A is more power-efficient and Type B is more effective for more warm light. (Ba,Sr):SisNs:Eu is used as for a red phosphor instead of Sr ₂ SisNs:Eu. Coffee Break 10:45-11:00	LEDIA2-01 10:40 Parallel light rays using ghost secondary source for airborne virus inactivation Hiroshi Ohno Toshiba Corporation A device is proposed for deactivating airborne viruses, utilizing ultraviolet parallel light generated from a parabolic reflector using a non-interfering ghost-like source at its focal point with a curved light guide and an LED.
Poster session program p 140	Hyeontaek Lee, Hee-Jin Choi Sejong University A lightfield type near display based on a pinhole array can achieve a compact form factor but also suffers from narrow range of pupil sizes. In this paper, we propose a novel method to extend the range of available eye pupil sizes of the device using polarization- multiplexed retinal projections. IP2-02 11:00 Enhancement of the color uniformity of a VHOE-waveguide-based AR eyewear display through drive signal management scheme	wide viewing angle and large size Qiong-Hua Wang, Di Wang, Yilong Li Beihang University	LEDIA2-02 10:55 Design of UV LEDs based on ultrathin GaN quantum wells emitting below 240 nm A. Izumi, K. Shojiki, M. Funato, Y. Kawakami Department of Electronic Science and Engineering, Kyoto University Ultrathin GaN/Al(Ga)N quantum wells are investigated for far UVC LEDs. Based on simulations, one monolayer GaN/ Al0.9Ga0.1N quantum wells emitting below 240 nm are successfully fabricated by metalorganic vapor phase epitaxy.
Poster session program p.140	Zih-Fan Chen ¹ , Shiuan Huei Lin ¹ , Vera Marinova ² , Ken Y. Hsu ¹ ¹ National Yang Ming Chiao Tung University, ² Institute of Optical Materials and Technologies In this paper, we introduce a streamlined approach—using a drive signal management scheme on a micro-display for optical engine—to enhance color uniformity in AR eyewear displays. With VHOEs and a waveguide, our method achieves a full-color display, 30° FOV, and less than 3% AELab color non-uniformity, requiring only one waveguide and three RGB gratings.	In this paper, a holographic 3D display system with wide viewing angle and large size is proposed based on a tunable liquid crystal grating. The proposed system shows a viewing angle of 57.4°, which is nearly 7 times of the conventional case with a single spatial light modulator, and the size of the reconstructed image is enlarged by about 4.2 times.	LEDIA2-03 11:10 Heterojunction Contact Layer UV LED with MgZnO:Ga As p-side Contact Layer Maki Kushimoto, Tatsuhiro Tanaka, Yoshio Honda, Hiroshi Amano Nagoya University We have fabricated and evaluated hetero- tunnel junction contact layer UV LEDs with MgZnO:Ga as the p-side contact layer to solve the low light extraction efficiency of UV-C LEDs.
	Evaluation on Basic Characteristics of a Profile Sensor with Built-in Center- of-Gravity Calculation Circuit Yoshinori Matsui ¹ , Keisuke Uchida ¹ , Kazuhiro Nakamura ¹ , Kenta Endo ² , Yukinobu Sugiyama ² , Munenori Takumi ¹ ¹ Central Research Laboratory, Hamamatsu Photonics K.K., ² Solid State Division, Hamamatsu Photonics K.K. We have developed a profile sensor with a built-in center-of-gravity position calculation circuit. We conducted micro vibration measurement experiments and confirmed that the 41.667[kHz] tracking mode can measure the positional fluctuation of the center of gravity in more detail than the normal mode.		

	Oral, Wednesda		
LSSE <room 316=""></room>	OMC <room 418=""></room>	OPTM <room 213=""></room>	OWPT <room 304=""></room>
	Coffee Break 10:15-10:45		OWPT3-03 10:15 Laser power beaming: flexible lunar
		[OPTMp] 10:30-12:00 OPTM Poster Session <exhibition a="" hall=""></exhibition>	power distribution Mitchell A. Kirby, Joseph A. Summers, Jonathan J. Gort, Drew Cardwell, Tom Nugent <i>PowerLight Technologies</i> This work explores the adaptability and versati of laser power beaming as a cornerstone technology in future power distribution architectures in the lunar environment.
Coffee Break 10:30-11:00	[OMC6] 10:45-12:00 Session 4 Chairs: Satoshi Ashihara <i>University of Tokyo</i> Ting-Hua Lu <i>National Taiwan Normal University</i>		Coffee Break 10:30-11:00
[LSSE5] 11:00-11:40 Industrial Application & Neuclear Application 2 Chair: Akihiko Nishimura JAEA	OMC6-01 10:45 Invited Plasmon - assisted photochemistry, chirality, and the hot - electron generation in plasmonic nanocrystals Alexander Govorov		[OWPT4] 11:00-12:00 Session 4 Chair: Kensuke Ikeda <i>CRIEPI</i>
LSSE5-01 11:00 Hydrogen Sulfide (H ₂ S) Decomposition in the Visible and Infrared Spectral Regions Hassnain Abbas Khan ² , Damian Pablo San Roman Alerigi ¹ , Adrican Cesar Cavazos Sepulveda ¹ , Amir Farooq ² ¹ <i>EXPEC Advanced Research Center, Aramco,</i> <i>Dhahran 31311, Saudi Arabia, ²King Abdullah</i> University of Science and Technology (KAUST), <i>Clean Combustion Research Centre, Physical</i> <i>Sciences and Engineering Division, Thuwal</i> <i>23955-6900, Saudi Arabia</i> Multispectral photocatalytic conversion of H ₂ S is investigated with a specific emphasis on the visible (532 nm) and infrared (1064 nm) spectral regions, employing S, CuS, and In ₂ S ₈ catalysts. LSSE5-02 11:20 Development of mid-infrared Cavity ring-down spectrometer for tritiated water analysis Momo Mukai ¹ , Erika Takayama ¹ , Kota Tsuge ¹ , Yuta Suzuki ¹ , Keisuke Saito ¹ , Norihiko Nishizawa ¹ , Hiroshi Abe ² ,	DMCG-02 11:15 OMCG-02 11:15 Optical Manipulation of Creeping Crystallization using Mie-resonant Dielectric Metasurface 11:15 OMCG-02 11:15 Optical Manipulation of Creeping Crystallization using Mie-resonant Dielectric Metasurface 11:15 Hiromasa Ninomi ¹ , Naoki Takano ¹ , Tomoya Oshikiri ^{1,2} , Masaru Nakagawa ¹ 11:nstitute of Multidisciplinary Research for Advanced Materials, Tohoku University, ² Research Institute for Electronic Science, Hokkaido University We investigated the possibility of optical manipulation of creeping crystallization for an aqueous solution using a Mie-resonant	Poster session program p.140-	OWPT4-01 11:02 Definition Self-Power-Feeding Bi-directional Rata Transmission using 125-pup Calding Diameter 4-core Fiber Calding Diameter 4-core Fiber Calding Diameter 4-core Fiber Calding Calding Diameter 4-core Fiber Calding Caldi
Hideki Tomita' ¹ <i>Nagoya University,</i> ² <i>AIST</i> We have been developing a Cavity ring-down spectrometer utilizing a mid-infrared laser for the rapid quantitative analysis of trace tritium in water samples. We report on the construction of our measurement system and the results of performance evaluations.	an aqueous solution using a Mie-resonant silicon (Si) nanodisk metasurface. OMC6-03 11:30 Rapid modulation of the directions of handedness of optical vortices for precise measurements of helical dichroism Shun Hashiyada, Yoshito Tanaka <i>Research Institute for Electronic Science,</i> <i>Hokkaido University</i> We propose and experimentally demonstrate rapid modulation of the directions of handedness of optical vortices carrying orbital angular momentum (OAM) at around 50 kHz. This modulation is achieved through the rapid modulation of those of circularly polarized lights carrying spin angular momentum (SAM), coupled with the SAM-OAM conversion techniques.		OWPT4-02 11:30 Fvaluation of Nonlinear Effects in fullow-Core Fibers for High-Power Transmission Souya Sugiura ¹ , Kai Murakami ¹ , Hironori Yamaj ¹ , Motoharu Matsuura ¹ , Takeshi Takagi ² , Kazunori Mukasa ² ¹ Jniversity of Electro-Communications, ² Furukawa Electric This study presents an overview of nonline effects in hollow-core fibers (HCFs). We experimentally evaluate the non-linearity of terms of stimulated Brillouin scattering and four-wave mixing. Compared with conventional silica-core single-mode fibers we show that HCFs has ultra-low nonlinearity, which is useful for high-power transmission applications such as power- over-fiber.

	Oral, Wednesda	y, 24 April AM	
SLPC <room 416+417=""></room>	TILA-LIC <room 315=""></room>	XOPT <room 313+314=""></room>	
Coffee Break 10:15-10:30		Coffee Break 10:15-10:30	
[SLPC6] 10:30-12:00 Micro Nano Processing 3 Chairs: Godai Miyaji Tokyo University of Agriculture and Technology Mizue Mizoshiri Nagaoka University of Technology		[XOPTp] 10:30-12:00 XOPT Poster Session <exhibition a="" hall=""></exhibition>	
SLPC6-01 10:30 Invited Preparation of Functional Vanoparticles by Laser Processing in Liquid for Biomedical Application diroyuki Wada	Coffee Break 10:30-11:00		
Tokyo Institute of Technology Functional inorganic nanoparticles such as upconversion and afterglow materials were orepared by laser ablation and melting in iquid for biomedical applications and nvestigated their optical properties and their offect on cancer therapy.	[TILA-LIC2] 11:00-12:00 TILA-LIC 2024 PLENARY SESSION Chair: Takunori Taira <i>RIKEN SPring-8 Center, Sayo-gun,</i> <i>Japan</i>		
SLPC6-02 11:00	TILA-LIC2-01 11:00 Invited		
aser bubbling in liquids Juowei Yang, Weiwei Cao, Bo Yan <i>Sun Yat-sen University</i> We developed a simple, clean, and efficient aser micro and nano-bubbling in liquids LBL) to produce clean energy. Our oreliminary research has shown that LBL, as a new concept of laser chemistry, will have great potential applications in clean energy manufacturing such as laser overall water splitting to produce hydrogen without any exalysts, and nitrogen activation and solidification including synthetic ammonia and nitric acid.	Dieter Hoffmann Fraunhofer-Institut für Lasertechnik ILT, Aachen, Germany TBD		
SLPC6-03 11:15			
NA Dependence of Micro-vias drilling Jong Jass Using 248nm Excimer Laser Tomonari Tanaka ¹ , Akira Suwa ¹ , Aasukaru Washio ² <i>Gigaphoton Inc., ²Waseda University</i> To understand the high aspect micro-via abrication mechanism, we report results of he relationship between the Numerical Aperture (NA) of the KrF excimer laser rradiation and the micro-vias depth.		Poster session program p.141-	
SLPC6-04 11:30			
Direct laser writing of non- bhotosensitive hydroxyapatite using bhotoreduction-triggered nanomaterial leposition diroaki Nishiyama, Shogo Nara <i>famagata University</i> We report a versatile direct laser writing, not imited by material photosensitivity, based on bhotoreduction-triggered nanomaterial leposition, and its application to non- bhotosensitive hydroxyapatite. Hydroxyapatite-clad microstructures were continuously formed only by laser ranslation.			

Oral, Wednesda	ay, 24 April PM	
ALPS <room 511+512=""></room>	BFSS <room 413=""></room>	BISC <room 419=""></room>
[ALPSp1]	Lunch 11:40-12:30	
	[BFSS3] 12:30-14:00 Special Session 1: Discussions around Listed Companies, including Global Trends, in the Context of Sustainable Finance Chair: Yumiko Miwa Meiji University	
Poster session program p.138-	BFSS3-01 12:30 Invited A New Light Source: Photonic-crystal Surface-emitting Laser (PCSEL) - On the numerous possibilities for realizing a smart society - Susumu Noda <i>Kyoto University</i> Recently, there is growing interest in realizing a smart society, represented by smart mobility and smart manufacturing, for which laser technology is key, along with the latest digital technologies such as digital twins and machine learning. In	
Lunch 12:00-13:15	this presentation, I will introduce new light	Lunch 12:00-13:30
[ALPS18] 13:15-14:30	sources called photonic-crystal surface- emitting lasers (PCSELs), which are expected to contribute to realizing this smart society.	
Optical frequency combs / Frequency stabilized lasers and	BFSS3-02 12:40 Invited	
applications (1) Chair: Norihiko Nishizawa Nagoya University ALPS18-01 13:15 Invited	Padel Discussion: Discussions around Listed Companies, including Global Trends, in the Context of Sustainable Finance Yumiko Miwa ¹ , Mari Yoshitaka ² , Akira Kato ³ , Masaki Suwa ⁴	
Ultrafast Quadratic Nonlinear Nanophotonics: From Superior Components to Advanced Circuits Alireza Marandi California Institute of Technology I will overview ultrafast nonlinear nanophotonics in lithium niobate including interare nerromatric amplifuenting off antical	and Consulting Co., Ltd. ³ Tokyo University of Science, ⁴ OMRON Corporation	[BISC3] 13:30-14:45 Session 3 Chair: Yuan Luo National Taiwan University
ntense parametric amplification, all-optical witching, vacuum squeezing, mode-locked asers, ultrabroadband sources, and ormation of different solitons, and discuss ongoing efforts toward advanced ultrafast nanophotonic circuits.		BISC3-01 13:30 Invite Quantitative Diffuse Reflectance Spectroscopy for Noninvasive Retrieve of Human Total Hb and HbA1c Content Ying-Yu Chen ¹ , Tzyy-Wei Fu ¹ , Chia-Te Chen ^{2,3} Hsiu-Chi Cheng ^{3,4,5} , Sheng-Hao Tseng ^{1,6} ¹ Department of Photonics, National Cheng- ¹ Interpret and Photonics and Cheng- ¹ Department of Photonics and
ALPS18-02 13:45		Kung University, ² Department of Nursing, National Cheng Kung University Hospital, ³ Department of Internal Madining, National
Highly Sensitive and Practical Mid-infrared Dual-comb Spectroscopy using Dual-comb Fiber Laser with Long-term Coherent Averaging Akifumi Asahara, Gakuto Fukawa, Takayuki Shimizu, Takashi Kato, Kaoru Minoshima <i>The Univ. of Electro-Communications</i> Highly sensitive and practical mid-infrared dual-comb spectroscopy based on a bidirectional dual-comb fiber laser is demonstrated. By implementing real-time and long-term coherent averaging, MIR gas spectroscopy with absolute wavelength is achieved without complex tight-locking system.		³ Department of Internal Medicine, National Cheng Kung University Hospital, ⁴ Institute of Clinical Medicine, National Cheng Kung University, ⁵ Institute of Molecular Medicine, National Cheng Kung University, ⁶ School of Dentistry, College of Dental Medicine, Kaohsiung Medical University We demonstrate here a compact, handheld diffuse reflectance spectroscopy device for non-invasive measurement of hemoglobin and HbA1c in human skin, validated on 16 patients, showing high correlation (r=0.886 and r=0.918) with blood test results.
ALPS18-03 14:00 High-Power and High-Coherence Fiber Comb System for Broadband Dual- Comb System for Broadband Dual- Comb Spectroscopy in Vis–NIR Region Ruichen Zhu', Haochen Tian', Runmin Li', Sida Xing', Thomas R. Schibli ³ , Takashi Kato ¹ , Akifumi Asahara ¹ , Kaoru Minoshima ¹ ¹ Univ. of Electro-Communications, ² Shanghai Institute of Optics and Fine Mechanics, ³ Univ. of Colorado This study presents a high-power, highly coherent dual-comb system spanning the Vis–NIR region via nonlinear broadening and wavelength conversion of Er fiber combs. The broad Vis–NIR spectrum is successfully retrieved in DCS.	Coffee Break 14:00-14:15	BISC3-02 14:00 Investigation on Characteristic of Oxygen Saturation Change Using Differential Analysis of Skin Spectral Reflectance Naomichi Yokoi ¹ , lori Kojima ² , Tomonori Yuasa Yoshihisa Aizu ² ¹ Chitose Institute of Science and Technology, ² Muroran Institute of Technology In the present study, we have investigated the correlation between oxygen saturation and the differential reflectance by means of the Monte Carlo simulation and the occlusion experiment for human's upper arm.

	Oral, Wednesda	ay, 24 April PM	
HEDS <room 311+312=""></room>	ICNN <room 414+415=""></room>	IP <room 302=""></room>	LDC <room 301=""></room>
HEDS6-04 11:30 High Power Nanosecond Laser for Opnamic Shock Compression and oadmap to high peak power laser at high repetition rate Divier Zabiolle, Stephane Branly, Florian Mollica, ranck Falcoz, Anna Golinelli, Pierre-Mary Paul Amplitude Laser Key words: Pulse shaped nanosecond laser, Dynamic Shock Compression, High Average Power, High Peak Power We report here the atest achievements in the development of high energy high repetition rate nanosecond asers along with our road map aimed at amping up the average power which is increasingly requested by the users. Lunch 11:45-13:30	[ICNNp] Poster session program p.140	IP2-04 11:30 Aerial volumetric display with fist-sized femtosecond laser excited range Tatsuki Mori, Kota Kumagai, Yoshio Hayasaki <i>Utsunomiya University</i> Aerial volumetric display with light-emitting voxels excited by focused femtosecond laser pulses was developed. The evaluation of the image rendering range was estimated. It had several centimeters in lateral and axial directions. IP2-05 11:45 Rehabilitation Using Mixed Reality - Basic Study on Finger-Pinching Application for Stroke Patients - Shintaro Hiratsuka, Daisuke Sakai, Sora Tanaka <i>Kitami Institute of Technology</i> We propose the rehabilitation using mixed reality (MR) for chronic stage patients after stroke.	LDC6-02 11:30 Invited Holographic Technology for Augmented Reality Near-eye Display Jinsoo Jeong, Byounghyo Lee, Jisoo Hong Korea Electronics Technology Institute This paper explores a novel lightweight augmented reality (AR) holographic projection module, addressing challenges in holographic image quality and display weight. The integration of a holographic projection system and a lens holographic optical element shows promising advancements for AR display technologies.
	Lunch 12:00-13:30	Lunch 12:00-13:15	Lunch 12:00-13:15
		[IP3] 13:15-14:30 Optical Computing / Al Optics Chair: Naoya Tate Kyushu University	[LDC7] 13:15-15:00 XR(AR, MR, VR) and Metaverse Technologies 2 Chairs: Tetsuo Shimizu <i>Epson</i> Masafumi Ide <i>Lambda Works</i>
		IP3-01 13:15 Invited	LDC7-01 13:15 Invited
[HEDSp] 13:30-15:00 HEDS Poster <exhibition a="" hall=""></exhibition>	[ICNN8] 13:30-15:15 Session 7 Chair: Takasumi Tanabe Chair: Takasumi Tanabe <i>keio University</i> ICNN8-01 13:30 Invited All-dielectric metasurface for highly efficient wavefront manipulation Kentaro Iwami Tokyo University of Agriculture and Technology All-dielectric metasurfaces efficiently manipulate light for various applications. Achievements include a polarization-separating metalens, multicolor holographic movies, and a multifunctional metasurface for atomic clocks, showcasing high efficiency despite fabrication challenges.	High-capacity Optical Networks Based on Spatial-Division Multiplexing Technologies Hideaki Furukawa National Institute of Information and Communications Technology Spatial division multiplexing technologies have been much focused on to extend the capacity limit of conventional optical networks. We present developed high- capacity optical transmission and switching technologies with multi-core/multi-mode fibers to realize Petabit-class optical networks. IP3-02 13:45 Numerical demonstration of spatial photonic Ising machine with parallel processing based on spatial multiplexing Suguru Shimomura, Yusuke Ogura, Jun Tanida Graduate School of Information Science and Technology, Osaka University In this study, we propose a method for implementing the spatial photonic Ising machine with parallel processing capability. We confirmed that the solution distribution is improved by the spatial multiplexing.	Smart AR Glasses for Social Inclusion Kiyoshi Kiyokawa NAIST We live in an era of diversity and inclusion. Our group aims to support the lives of various individuals through research on smart augmented reality (AR) glasses. This paper presents specific examples of our research endeavors. LDC7-02 13:45 Invited Novel highly efficient pancake optics for HMD named "Double path" Naru Usukura', Takehisa Yoshida', Kiyoshi Minoura', Yoshiko Honma ² 'Sharp Display Technology Corporation, ² Kantatsu Company We have proposed novel Head Mounted Display (HMD) pancake optics named "Double path" pancake optics to achieve both compactness and high light efficiency simultaneously. We made the prototype with 25.5 mm thickness of optics and confirmed high image quality with 1.8 times higher light efficiency compared to that of conventional one.
	ICNN8-0214:00InvitedNonlinear optics and soliton frequency combs in ultrahigh-Q microresonatorsShun Fuji Keio UniversityHere we show a recent advance in soliton frequency combs in ultrahigh-Q microresonators while highlighting the generation and its applications.	IP3-03 14:00 Deep Neural Network-based Single Pixel Imaging System for Astronomical Observations Shinjiro Kodama', Moe Sakurai', Chihiro Sato', Yutaka Hayano ² , Mitsuo Takeda ³ , Eriko Watanabe ¹ 'Inb University of Electro-Communications, ² National Astronomical Observatory of Japan, ³ Utsunomiya University We present a preliminary experimental evaluation of atmospheric turbulence suppression by DNN-based single-pixel imaging (SPI). The atmospheric turbulence was generated based on Kolmogorov's theory. We also designed the optical setup combining SPI and astronomical telescope for field experiment.	

Wed, 24 April, PM

LEDIA <room 211+212=""></room>	LSC <room 421=""></room>	LSSE <room 316=""></room>	
		LSSE <r00111 310=""></r00111>	OMC <room 418=""></room>
[LEDIA-SP] 11:25-12:37			OMC6-04 11:45
Short Presentation Chair: H. Murakami			Imaging of optical chirality near single
Tokyo University of Agriculture and Technology			gold nanoplates illuminated by linearly polarized near-field Seiju Hasegawa, Riku Kasahara, Kohei Imura
Please see the session of LEDIAp (p.143-).			<i>Waseda University</i> We examined the optical chiral field near a
EDIA-SP-01 11:25	-		gold nanoplate by aperture-type scanning near-field optical microscopy. The optical
lemonstration of high aspect ratio tching by Ni mask process for µ-LED nonolithic integration			chiral field depends on the incident polarization and is localized in the vicinity of the nanoplate.
EDIA-SP-02 11:29	-		
urrent Transport and Photodetection in ontacts of Graphene Quantum Dot and GaN	I		
EDIA-SP-03 11:33	-		
vestigation of sidewall-surface ecombination using InGaN based blue			Lunch 12:00-13:15
nd red micro-LEDs		[LSSE6] 13:00-15:00	
EDIA-SP-04 11:37	[\$01] 13:15-14:20	Keynote & Agri-Photonics 1	[OMC7] 13:15-14:30
ligh-efficiency InGaN tunnel-junction aser diode	- [LSC1] 13:15-14:20 XFEL, time-resolved (1)	Chair: Satoshi Wada <i>RIKEN</i>	Session 5
iser aloae	Chair: Toshihiko Shimizu Osaka University		Chairs: Nobuhiko Yokoshi Osaka Metropolitan University
EDIA-SP-05 11:41	-	LSSE6-01 13:00 Keynote	Kishan Dholakia
nprovement of Optical Isolation in aN-based Integrated Micro-LEDs	LSC-OP 13:15 Opening Remarks	Who Manage a Future of Agriculture? Sakae Shibusawa	University of Adelaide
EDIA-SP-06 11:45	Hiroki Wadati	Tokyo University of Agriculture	
asic properties of heavily Ge-doped GaN	_ University of Hyogo	Precision agriculture or smart agriculture practices have provided many kinds of data	OMC7-01 13:15 Invite
nd AlGaN prepared by pulsed sputtering		and information relating to farm management, and then how to and who	Customizing superfluid turbulence with vortex tweezers
EDIA-SP-07 11:49	Ultrafast Study of photocarrier dynamics in water splitting process by	manage the data has become a keen/	Tyler W. Neely
valuation of neutron detection	time resolved XAFS	serious issue. Decision has been a main role of independent farmers for a lond time and	University of Queensland Precision optical control has emerged as a
haracteristics of BGaN detector using ong wavelength neutron beam	Ryo Fukaya ¹ , Shin-ichi Adachi ^{1,2}	decision support is an expectation of precision agriculture. People have witnessed	leading technique for the trapping and manipulation of dilute-gas atomic
EDIA-SP-08 11:53	¹ Institute of Materials Structure Science, KEK, ² Materials Structure Science Program, SOKENDAI	drastic changes in agriculture.	superfluids. I will describe our techniques for
eparation of AlGaN-based LED	In this study, cocatalyst nanoparticles were		using these traps to both confine and stir up quasi two-dimensional (2D) Bose-Einstein
tructures from AIN/sapphire template y photoelectrochemical etching	and XAFS was used to observe the carrier		condensates (BECs), leading to the recent realization of a vortex-matter simulator of
	behavior within the cocatalyst. This study will lead to a better understanding of the		the one-component plasma (OCP), an archetypical model of long-range interacting
EDIA-SP-09 11:57 nhancing carrier transport and capture	 water splitting process and contribute to the development of efficient renewable energy. 		particles in 2D.
ith a good current spreading characteristic	development of emelent renewable energy.		
a graphene quantum dots in InGaN/GaN ultiple-quantum-well light emitting diodes	LSC1-02 13:40 Invited		OMC7-02 13:45
EDIA-SP-10 12:01	Photoinduced non-equilibrium dynamics of magnetic orders in multiferroic		Snapshot visualization of initial process in laser-induced forward transfer
lectronic structures of K-Ga ₂ O ₃ /Al ₂ O ₃	 manganites studied by time-resolved resonant soft X-ray scattering 		Ryota Tamemoto ¹ , Syunta Kogie ¹ , Kotaro Sato ¹ Keisaku Yamane ¹ , Yasunori Toda ¹ ,
uperlattices	Ryo Fukaya ¹ , Hironori Nakao ^{1,2} , Jun-ichi Adachi ^{1,2} , Shunsuke Nozawa ^{1,2} , Shin-ichi Adachi ^{1,2}		Takashige Omatsu ^{2,3} , Ryuji Morita ¹ ¹ <i>Hokkaido University,</i> ² <i>Chiba Univ.,</i> ³ <i>MCRC</i>
EDIA-SP-11 12:05	¹ Institute of Materials Structure Science, High		Chiba Univ.
irst-Principles Calculations of Bandga ontrol of <i>K</i> -Ga ₂ O ₃ by Uniaxial Strain	Energy Accelerator Research Organization, ² Graduate University for Advanced Studies		We demonstrated the snapshot imaging of the temporal evolution of laser-induced cavitation
-	We investigated elementally-selective photoinduced dynamics of the magnetic		bubbles generated by optical vortex pulse irradiation with ~0.16 Gfps by using our newly
EDIA-SP-12 12:09 abrication and Evaluation of Low-B	 orders in multiferroic manganites RMn₂0₅ 		developed frequency-swept pulse train generator
omposition and High Crystallinity BGaN eutron Detectors for Nuclear Reactor	dynamics correlated with the magnetic		
EDIA-SP-13 12:13	structures and oxygen spin polarization via the 0 2 <i>p</i> -Mn 3 <i>d</i> orbital hybridization.		
igh temperature and high speed		الممانيريون ١٨٠٥٥ الممانيريون	0MC7_03 1/+00
rowth of GaN by Cl ₂ -based HVPE	LSC1-03 14:00 Invited Ultrafast lattice dynamics of quantum	LSSE6-02 14:00 Invited Impacts of Varied Led Spectra on	OMC7-03 14:00 Evaluating the spatial resolution of
EDIA-SP-14 12:17	materials studied by time-resolved X-ray diffraction measurements using	Growth and Bioactive Compounds Synthesis in Spinach (Spinacia	Stokes camera Shoki Nagai, Monia Akter, Yoko Miyamoto
nvestigation of conversion efficiency f different Ga oxidants in OVPE-GaN	X-ray free electron laser	oleacera L.) during Hydroponic	The University of Electro Communications
rowth	Takeshi Suzuki ISSP, The University of Tokyo	Cultivation in a Plant Factory Nguyen Le Khanh, Nguyen The Ngoc Phuong	A Stokes camera can display the spatial distribution of Stokes parameters S0-S3, but
	Time-resolved X-ray diffraction measurements	Faculty for Agricultural Technology, VNU	resolution is an issue when capturing fine
EDIA-SP-15 12:21			
EDIA-SP-15 12:21 acancies in III-Nitrides (I): Formation nder Reconstructed Surfaces	 using X-ray free electron laser have played an important role in revealing the non-equilibrium lattice structure of solid-state materials. In this 	University of Engineering and Technology Spinach (Spinacia oleacera L.) was cultivated in a hydroponic system and	polarization states. To evaluate the resolution of the camera, we evaluate the degree of contrast loss with increasing spatial

Vacancies in III-Nitrides (II): Diffusion near Hetero Interfaces

presentation, I will talk about our recent results using this method to study the lattice dynamics of quantum materials and briefly discuss future perspectives.

exposed to six LED light formulas, revealing varying effects on growth parameters and nutrient content during both seedling and adult stages.

frequency. The spatial distribution of S1 in the form of stripes is generated by an interferometer, and the contrast is calculated by varying the spacing between the stripes.

Oral, Wednesday, 24 April PM TILA-LIC <Room 315> OPTM <Room 213> OWPT <Room 304> SLPC <Room 416+417> [OPTMp] OWPT4-03 11:45 SLPC6-05 11:45 Simultaneous Data and Power Deep eutectic solvents as a novel Transmission Using a Hollow-Core precursor for the direct laser Fiber for Passive Optical Network metallization of polymers Hironori Yamaii¹, Kai Murakami¹ Ilya I Tumkin¹, Evgeniia M Khairullina², Souya Sugiura¹, Motoharu Matsuura¹, Lev S Logunov³, Evgeny L Gurevich⁴, Takeshi Takagi2, Kazunori Mukasa2 Andreas Ostendorf1 ¹University of Electro-Communications, ¹Ruhr University Bochum, ²Saint Petersburg ²Furukawa Electric State University, 3ITMO University, 4University of Poster session program p.140-Applied Sciences Münster This paper presents simultaneous data and power transmission using a 1 km hollow-Flexible electronics has attracted an increasing core fiber for passive optical networks. In attention over the last 10 years as it is at the this paper, we successfully achieved high edge of the development of new portable transmission characteristics of radio-overdevices. Laser based technologies are attracting fiber data signals with more than 5 W feed new applications due to the unique properties of light injection. laser light, providing the selectivity. It is demonstrated that precursors based on DES can open new directions for direct laser metallisation. ----- Lunch 12:00-13:00 ---------- Lunch 12:00-13:30 ---------- Lunch 12:00-13:15 ---------- Lunch 12:00-13:00 -----[OPTM7] 13:00-14:00 [OWPTp] 13:30-15:00 [TILA-LIC3] 13:00-14:15 Session 7 **OWPT Poster Session** Laser Ignition Chair: Nathan Haen <Exhibition Hall A> [SLPC7] 13:15-14:30 Chair: Jun Havashi Utsunomiya University Industrial Applications / Advanced Graduate School of Energy Science, Lasers and Optical Technologies Kyoto University, Japan Chairs: Hitoshi Nakano OPTM7-01 13:00 Invited Kindai University TILA-LIC3-01 13:00 Invited Aiko Narazaki Active plasmonics for dynamic color Recent applications of the National Institute of Advanced tuning miniaturized HiPoLas ignition system Industrial Science and Technology Atsushi Ono Gerhard Kroupa¹, Michael Börner² Shizuoka Universitv Nico Rackemann³, Sebastian Soller³, Tibor Bereczki¹ SLPC7-01 13:15 Invited In the plasmonics research field, there is ¹Silicon Austria Labs (SAL), High Tech Campus growing interest in techniques for **Beam-Shaping with Multi-Plane Light** Villach, Europastraße 12, 9524 Villach, Austria, dynamically controlling the surface plasmon Conversion to improve laser processes ²German Aerospace Center (DLR), Institute of Space Propulsion, 74239 Hardthausen, resonance wavelength of metal related to the battery manufacturing nanostructures by substrate stretching, Germany, ³Ariane Group GmbH, Robert-Koch-Gwenn Pallier, Ivan Gusachenko, chemical reactions, external electric field Str. 1, 82024 Taufkirchen, Germany Adeline Orieux, Guillaume Labroille application, and other methods. Dynamic Cailabs, 1 rue Nicolas Joseph Cugnot, 35000 Development status and recent applications control of the resonance wavelength enables Rennes, FRANCE of the miniaturized GenV-HiPoLas ignition the color tuning of transmitted light, which is system, summarizing more than 10 years of This paper explores the integration of promising for sensor applications. development towards rocket engine ignition, Multi-Plane Light Conversion (MPLC) technology in these critical manufacturing as well as first results of a fibre distribution steps to enhance efficiency and product quality. system will be presented. OPTM7-02 13:30 TILA-LIC3-02 13:30 Invited Vertical Movement of Laser Trapped Laser induced ignition and plasma Micro Particle Along the Optical Axis spectroscopy using 10 kHz Nd:YAG on Periodic Structured Substrate lasers on spray facilities Mizuki Kikkawa¹, Ryo Takizawa¹, Shotaro kadoya¹, Axel Ivaldi, Laurent Zimmer SLPC7-02 13:45 Masaki Michihata¹, Shuhei Kodama², Université Paris-Saclay, CNRS, Gif-sur-Yvette, Fine Control of THz Emission with Dual Godai Miyaji3, Satoru Takahashi1 France **Pre-Pulses in Air** ¹Dept. of Precision Engineering, The Univ. The aim of this paper is to investigate of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8656, Japan, ²Department of Mechanical Hsin-hui Huang¹, Takeshi Nagashima², potential benefits of using a high-speed Kota Kumagai³, Yoshio Hayasaki³, Saulius Juodkazis^{1,4,5}, Vladimir T. Tikhonchuk^{6,7}, laser (10 kHz) to ignite and stabilize a liquid Engineering, Tokyo City University, 1-28-1 fuel flames by directly igniting droplets. Tamadutsumi, Setagaya-ku, Tokyo 158-8557, Koji Hatanaka^{3,8} Plasma is formed in droplets crossing the ¹ Swinburne University Of Technology, ²Setsunan University, ³Utsunomiya University, ⁴Tokyo Institute of Technology, ⁵Vilnius Japan, ³Department of Applied Physics, Tokyo laser beam, not only at the focal point of the Poster session program p.144 University of Agriculture and Technology, 2-24-16 beam, leading to multiple ignition spots. The Nakacho, Koganei City, Tokyo 184-0012, Japan effects of laser frequency as well as laser University, ⁶University of Bordeaux, ⁷ELI Optical trapping on periodic structured substate energy is investigated for various injection Beamlines Facility, ⁸Okayama University enabled micro particle movement along optical narameters The emission and polarization control of axis by changing position of structured substate. terahertz waves is important in wide applications. Here, with a pulsed OPTM7-03 13:45 femtosecond laser split into a main-pulse **Optical Characterization of Translucent** and two pre-pulses, an advanced fine Wood control of THz emission is achieved. Ashima Vashistha^{1,2}, Christophe Couteau¹, Sebastien Patour² SLPC7-03 14:00 TILA-LIC3-03 14:00 ¹University of Technology of Troyes, ²Woodoo The effect of convection conditions on Pulse-burst mode laser ignition of H₂/ SAS aberration in the beam delivery system air mixtures by a single-beam This study explores the characterization and passively Q-switched Nd:YAG/Cr4+:YAG Ji Hun Kim, Seong Cheol Woo, Joohan Kim measurement of optical properties of Seoul National University of science and laser translucent wood (for industrial applications), Oana-Valeria Grigore, Nicolaie Pavel technology considering influential factors such as species structural anatomy (porosity, In optical systems, beam delivery technique is National Institute for Laser, Plasma and Radiation Physics density), and the fabrication processes used important in modern science and industry. to attain translucency. Optical systems are used in various Laser ignition of H₂/air mixtures have been environmental conditions such as investigated in a constant-volume temperature, humidity, dust, and vibration, combustion chamber using a passively ----- Coffee Break 14:00-14:15 -----Q-switched Nd:YAG/Cr4+:YAG laser. leading to potential aberrations. In this study, we used a Shack-Hartmann Wavefront Sensor Single-pulse ignition and ignition with trains (SHWFS) for aberration measurements to of up to five pulses were done at various investigate the effect of convection conditions pressures on aberration in the beam delivery systems.

ALPS & HEDS & XOPT <Room 303>

[JS] 14:15-15:45 ALPS/HEDS/XOPT Joint Session

Chairs: Zhaoyang Li Shanghai Institute of Optics and Fine Mechanics Makina Yabashi RIKEN Youichi Sakawa Osaka Univ.

JS-01 14:15

Ultrafast laser driven Coherent Terahertz Surface plasmon polariton amplification and electron acceleration

Ye Tian, Yushan Zeng

Chinese Academy of Sciences In this work, we introduce the use of femtosecond laser to generate the interaction platform between electrons and surface plasmon (SPP), and realize the "amplification" of SPP energy. Comb Generation Based on a Bidirectional Dual-comb Fiber Laser Kousuke Kubota¹, Ryusei Uchiyama¹, Takumi Yumoto¹, Wataru Kokuyama², Peter G Schunemann³, Yoshiaki Nakajima¹ ¹Toho Univ., ²AIST, ³BAE Systems We generated a long-wavelength infrared frequency comb spanning from 6.0 to 10.0 µm using a bidirectional dual-comb fiber laser that incorporates an orientationpatterned gallium phosphide crystal.

Long-Wavelength Infrared Frequency

ALPS18-04 14:15

ALPS <Room 511+512>

Special Session 2: Discussions around Unlisted Companies, focusing on University-launched Start-ups, in the Context of Sustainable Finance Chair: Nobuyuki Ogata Hosei University

[BFSS4] 14:15-15:45

BFSS <Room 413>

BFSS4-01 14:15

Panel Discussion: Discussions around Unlisted Companies, focusing on University-launched Start-ups, in the Context of Sustainable Finance Nobuyuki Ogata¹, Sachiyo Nomura²,

Keisuke Goda³, Takahiro Ikeda⁴, Hirokazu Kitahara⁵ ¹Hosei University, ³Soka University, ³The University of Tokyo, ⁴Pi Photonics, Inc., ⁵Archetype Ventures

RGB camera-based real-time

Invited BISC3-03 14:15

monitoring of hemodynamics in intraperitoneal organs using laparoscopic imaging system Rokeya Khatun¹, Yurika Suzuki¹,

Ryuichi Kumashiro², Naotake Kuriyama³, Tetsuo Ikeda^{2.3}, Hajime Nagahara⁴, Izumi Nishidate¹

¹Graduate School of Bio-Applications & Systems Engineering, Tokyo University of Agriculture and Technology, ²Section of General Surgery, Department of Medicine, Division of Oral & Medical Management, Fukuoka Dental College, ³Center of Endoscopy, Endoscopic Therapy and Surgery, Division of Oral & Medical Management, Fukuoka Dental College, ⁴Institute for Datability Science, Osaka University, Osaka University We developed an RGB camera-based imaging

here to be point the spatial and temporal hemodynamics in intraperitoneal organs using a commercially available laparoscopic imaging system. *In vivo* animal experiments with rats demonstrated the ability of the method to evaluate the volume fraction of total hemoglobin and its oxygen saturation of intraperitoneal organs in real time.

BISC3-04 14:30

In vivo evaluation of burn depth in skin tissue of rats using hemoglobin parameters estimated by a red-greenblue imaging

Rokeya Khatun¹, Md Anowar Parvez¹, Kazuhiro Yashiro¹, Yasuyuki Tsunoi², Daizoh Saitoh³, Shunichi Sato², Izumi Nishidate¹

¹Tokyo University of Agriculture and Technology, ²National Defense Medical College Research Institute, ⁹Kokushikan University We investigated a red-green-blue camerabased diffuse reflectance imaging for quantifying total hemoglobin concentration, tissue oxygen saturation, and methemoglobin saturation in burn wounds to

classify superficial dermal burn, deep dermal burn and non-burned skin in rats.

----- Coffee Break 14:45-15:00 -----

----- Coffee Break 14:30-14:45 -----

[ALPS19] 14:45-15:45 Optical frequency combs / Frequency stabilized lasers and applications (2) Chair: Yoshiaki Nakajima Toho Univ.

JS-02 14:45

Light Source.

High-Resolution Three Dimensional Imaging Using Ptychography Manuel Guizar-Sicairos

Paul Scherrer Institut In this talk, I will introduce the basics of lensless imaging and ptychography, and highlight the latest results from the Swiss

ALPS19-01 14:45

Ultra-High Timing Precision Femtosecond Lasers and Applications Youjian Song

Invited

Tianjin University

Advanced attosecond precision optical sampling methods have been developed and used for timing jitter characterization of various ultrafast laser sources, time-of-flight measurement and probe of soliton molecular internal dynamics.

Oral Program

BISC <Room 419>

	Oral, Wednesda	ay, 24 April PM	
HEDS <room 311+312=""></room>	ICNN <room 414+415=""></room>	IP <room 302=""></room>	LDC <room 301=""></room>
IEDSp]			
		IP3-04 14:15 Machine-learning-based object recognition from a small number of speckles using the optical memory effect Yohei Nishizaki ¹ , Katsuhisa Kitaguchi ¹ , Mamoru Saito ¹ , Jun Tanida ² ¹ Osaka Research Institute of Industrial Science end Tactere ² Osaka Heiser and the section of the sector of the s	LDC7-03 14:15 Gerchberg-Saxton algorithm with phase constraint for phase-only- hologram generation Ye-Hao Hou, Qian Huang, Di Wang, Qiong-Hua Wang <i>Beihang University</i> In this paper, an improved Gerchberg-Saxton
		and Technology, ² Osaka University We have experimentally demonstrated an efficient machine-learning-based object recognition through scattering media using the optical memory effect. Our method augments a small number of speckles, which are captured within the optical memory effect, using a computer. The experimental results show that the classifier, obtained by augmenting a small number of speckles, has achieved high accuracy.	(GS) algorithm with phase constraint is proposed. Comparative analyses are conducted with several conventional GS-based algorithms for phase-only- hologram generation, specifically focusing on the impact of amplitude and phase constraints on holographic reconstruction of 3D scenes. The experiments demonstrate the superior performance of the proposed method in accurately reconstructing phase information.
Poster session program p.142-	ICNN8-03 14:30 Transfer printing integration of InP-based membrane lasers on diamond Takumi Sato ¹ , Yoshiho Maeda ² , Takuma Aihara ² , Takuro Fujii ² , Suguru Yamaoka ² , Tatsuro Hirakl ² , Koji Takeda ² , Toru Segawa ² , Satoshi Iwamoto ³ , Yasuhiko Arakawa ⁴ , Shinji Matsuo ² , Yasutomo Ota ¹ ¹ <i>keio Univ.</i> , ² <i>NTT Device Technology Labs.</i> , ³ <i>RCAST, the Univ. of Tokyo, ⁴Nanoquine, the Univ. of Tokyo</i> InP-based membrane lasers have attracted much attention as high-speed and high- efficiency light sources for future optical data communications. In pursuit of their ultimate performance, advanced thermal management will be indispensable. In this work, we used transfer printing and report the fabrication of InP-based membrane lasers directly integrated on a diamond substrate, which has the highest thermal conductivity among any solid materials.	Coffee Break 14:30-15:00	LDC7-04 14:30 Evaluation of visibility when blur is added to virtual images except for the gaze point on AR-based information display Yuta Machigashira, Haruki Mizushina, Kenji Yamamoto Tokushima University In this paper, we evaluated the visibility of characters in AR-based information display with and without adding blur to images in the periphery of the visual field. As a result, there was no trend common to all subjects showed some tendency toward shorter response times.
	ICNN8-04 14:45 Novel approach for highly accurate measurement of electro-optic coefficient based on transmission Teng and Man ellipsometric method: dependence on measurement wavelengths Yasufumi Enami Nagasaki University We measure highly accurate electro-optic (E0) coefficient for E0 materials using a transmission method, overcoming the limitations of the Teng and Man reflection ellipsometric method, which shows tunable-wavelength dependence for the measured E0 coefficient, and enhancing reliability and accuracy in E0 research.		LDC7-05 14:45 Fundamental evaluation of the pseudo-3D perception on the 2D aerial images Kenta Saito, Haruki Mizushina, Kenji Yamamoto <i>The University of Tokushima</i> We evaluated how the pseudo-3D perception of a 2D aerial image was influenced by the luminance and contrast of the background and the distance between the background and the distance between the background and the 2D aerial image. The experimental results showed that the pseudo-3D perception tended to occur when both the background luminance and contrast were low. There were individual differences in the pseudo-3D perception of the 2D aerial image by changing the display position of the 2D aerial image.

	Oral, Wednesda		
LEDIA <room 211+212=""></room>	LSC <room 421=""></room>	LSSE <room 316=""></room>	OMC <room 418=""></room>
EDIA-SP-17 12:29 Homoepitaxial regrowth of AlGaN on chemically mechanically polished AlGaN templates and its application to JV B laser diodes			
EDIA-SP-18 12:33 RF-MBE growth of AlGaN on low- dislocation-density AlN template substrates			OMC7-04 14:15 Optical force induced by superfluorescence of emitters on a metallic nanofiber
Lunch 12:37-13:30	Coffee Break 14:20-14:40		Hideki Arahari ¹ , Hajime Ishihara ¹ , Nobuhiko Yokoshi ²
[LEDIAp] 13:30-15:00 LEDIA Poster Session <exhibition a="" hall=""></exhibition>			Volume Investity, ² Osaka Metropolitan University We assumed a system that enhances the coupling between emitters by fiber-guided surface plasmon modes. We theoretically evaluated the optical forces generated by superfluorescence and investigated the dependence on the number and arrangements of emitters.
	[LSC2] 14:40-15:55	LSSE6-03 14:30 Invited	Coffee Break 14:30-14:45
	[LSC2] 14:40-15:35 XFEL, time-resolved (2) " Chair: Ryo Fukaya n High Energy Accelerator Research V Organization M	"iR Fresh ™", a technology for maintaining freshness of fruits and vegetables after harvest by irradiating with Near-Infrared Light Ayako Hada Shikoku Reasearch Institute INC.	[OMC8] 14:45-16:00 Session 6 Chairs: Kyoko Namura <i>Kyoto University</i> Xiaodi Tan Fujian Normal University
Poster session program p.143-	Observation of the photoreaction in the iron complex solution by time- resolved soft X-ray absorption spectroscopy in KEK-PF Fumitoshi Kumaki', Masanari Nagasaka ² , Ryo Fukaya ¹ , Jun-ichi Adachi ¹ 'Institute of Materials Structure Science, High Energy Accelerator Research Organization, ² Institute of Molecular Science We have developed the time-resolved soft X-ray absorption spectroscopy system for liquid samples in KEK-PF and measured the photoreaction of iron complex solution. We will discuss the data and compare them with the data measured by time-resolved UV-Vis spectroscopy.	After harvest, fruits and vegetables lose their freshness due to respiration and transpiration. In response, we have developed a freshness preservation technology using near-infrared light irradiation, and we will introduce an example of its implementation.	OMC8-01 14:45 Invited Single droplet formation with a focused near-infrared laser beam in the temperature responsive ionic liquid Near State S
Coffee Break 15:00-15:15	LSC2-02 15:00 Invited Ordered Structures in Group-III Nitrides: A First-principles Study Hiroshi Mizuseki ¹ , Jessiel Siaron Gueriba ^{2,3} , Marilou Cadatal-Raduban ⁴ , Nobuhiko Sarukura ^{2,5} , Eiichi Tamiya ^{3,6} , Yoshiyuki Kawazoe ^{5,7,8} ¹ korea Institute of Science and Technology, ^a Institute of Laser Engineering, Osaka University, ³ Institute of Scientific and Industrial Research, Osaka University, ⁴ Centre for Tecoretine Operatient and Diversion School	Coffee Break 15:00-15:30	
UV devices (2) Chair: T. Tanikawa	Theoretical Chemistry and Physics, School of Natural Sciences, Massey University, ⁵ New Industry Creation Hatchory Conter		
Osaka University	⁵ New Industry Creation Hatchery Center, Tohoku University, ⁶ Advanced Photonics and Biosensing Open Innovation Laboratory, AIST-		01100 00 45 15
LEDIA3-01 15:15 Characteristics of optical pumped AlGaN-based UV-B lasers on AlGaN templates grown on TMAH wet-etched periodic AlN nanopillars Yoshinori Imoto', Rintaro Miyake', Ryosuke Kondo', Ryoya Yamada', Toma Nishibayashi', Eri Matsubara', Takumu Saito', Shundai Maruyama', Yusuke Sasaki', Sho Iwayama', Satoshi Kamiyama', Tetsuya Takeuchi', Hideto Miyake', Motoaki Iwaya' ' <i>Meijo University, ²Mie University</i> We report that the threshold power density of an optically pumped laser fabricated on AlGaN grown on TMAH wet-etched periodic AlN nanopillars is reduced by half compared to that without wet-etching treatment.	Social of the second se		OMC8-02 15:15 Space-time surface plasmon polaritons: Wavefront shaping of light and its transfer to surface plasmon waves Atsushi Kubo ¹ , Naoki Ichiji ^{1,2} , Hibiki Kikuchi ¹ , Murat Yessenov ³ , Kenneth L. Schepler ³ , Ayman F. Abouraddy ³ ¹ University of Tsukuba, ² The University of Tokyo, ³ University of Central Florida Space time surface plasmon polaritons (ST-SPPs), a surface wave featuring a concept of optical space-time wave packet (ST-WP), are generated on a metal surface. By using ST-WP as an excitation source, the ST-SPP exhibits characteristics comparable to those of ST-WP, such as non-diffractive propagation.

	Oral, Wednes	day, 24 April PM	
OPTM <room 213=""></room>	OWPT <room 304=""></room>	SLPC <room 416+417=""></room>	TILA-LIC <room 315=""></room>
[OPTM8] 14:15-15:15 Session 8 Chairs: Naila Zahra <i>Osaka University</i> Atsushi Ono <i>Shizuoka University</i>	[OWPTp]		
PTM8-01 14:15 Invited		SLPC7-04 14:15	
Iltrasonically controlled liquid crystal ense evaluation through optical measurements lessica Onaka ¹ , Daisuke Koyama ² Center for Optical Research and Education CORE), Utsunomiya University, ² Faculty of Science and Engineering, Doshisha University for ultrasonic liquid crystal lenses, the teometry of the lens and the design of the liezoelectric transducer are critical factors. In this work, several optical measurements were used to evaluate the performance of the ultrasound liquid crystal lenses.		Free of thermal focus shift optics made of crystal quartz Alexander Laskin', Joerg Volpp ² , Takuji Nara ³ 'AdlOptica Optical Systems GmbH, ² Lulea University of Technology, ³ Profitet Unique combination of physical properties of crystal quartz provides self-compensation of unwished thermo-optical effects such as focus shift and aberrations, and makes it an athermal optical material for multi-kW optics.	Coffee Break 14:15-14:30 [TILA-LIC4] 14:30-16:00 Laser Sources - 1 Chair: Nicolaie Pavel National Institute for Laser, Plasma and Radiation Physics - INFLPR, Magurele, Romania
	Destas service success a 144	Coffee Break 14:30-14:45	TILA-LIC4-01 14:30 Invited
	Poster session program p.144	[SLPC8] 14:45-15:45 AI / CPS Laser Processing Chairs: Aiko Narazaki National Institute of Advanced Industrial Science and Technology Hitoshi Nakano Kindai University	Large core diameter crystal waveguide - a new device for high brightness solid-state lasers Qiang Li, Shuai Li, Hong Lei, Zhanda Zhu <i>Beijing University of Technology, China</i> Large core diameter crystal waveguides are composed of all crystal materials such as yttrium aluminum garnet (YAG), which have
PTM8-02 14:45		SLPC8-01 14:45 Invited	better thermodynamic and optical properties than glass fibers. The large core diameter
y scanning-slit method based on ack-injection interferometry uanfu Tan he Chinese University of Hong Kong this study, a new spot size measurement evice based on laser back-injection therferometry was presented. The hotodiode integrated with the laser diode ras used to collect the feedback laser, then he laser spot size was calculated by the eedback current. Results show that our spot ze measurement device could measure the boot size of 5 laser diode modules both in he x and y direction , which is cost- ffective, easy to operate, and accurate.		physical properties of a weld seam - how much information is buried in the sensor signals of a laser welding process? Markus Kogel-Hollacher ¹ , Jens Reiser ¹ , Joachim Schwarz ² , Fabian Mack ¹ , Thomas Nicolay ³ , Stan Watanabe ⁴ ¹ Precitec GmbH & Co. KG, ² Precitec Vision GmbH & Co. KG, ³ Precitec Optronik GmbH, ⁴ Precitec Japan Ltd The focus of this presentation is on using artificial intelligence algorithms to "make the invisible visible". We will discuss how classified, physical properties can be derived from already reliable process information. Rather than defining complex rules for	waveguide has a large fundamental mode field area, which has extremely high-powe expansion potential, providing a new approach for the development of high brightness solid-state lasers.
PTM8-03 15:00		algorithms, the use of Data Science and Machine Learning methods reveals hidden	TILA-LIC4-02 15:00
A Modulation Transfer Function Approach to Fisheye Lens Polarization Aberrations Manning Sun ¹ , Nathan Hagen ¹ , Russell Chipman ^{2,1} , Yukitoshi Otani ¹ <i>Utsunomiya University, ²Meta, USA.</i> This study investigates polarization aberrations in fisheye lens imaging. It analyzes the impact of polarizers on the ens's performance and confirms the presence of polarization aberrations in the all field of view imagery through experimental validation. Additionally, MTF analysis is used to quantify the effects of		structures in noisy unstructured data and make it possible to find the relationships of the data to the physical measurement.	High-brightness 480 nm laser for cold-atom-based quantum-computer Baptiste Bruneteau ¹ , Hwan Hong Lim ¹ , Takunori Taira ^{1,2} ¹ Institute for Molecular Science, ² RIKEN SPring-8 Center This work describes the step-by-step design of a high-brightness laser emitting at 480nm for quantum-computing applications. It presents means to achieve specifications needed by quantum-computer applications in terms of brightness, timing-jitter, energy stability and linewidth.
olarization aberrations on image quality, evealing significant impacts on MTF.		SLPC8-02 15:15	TILA-LIC4-03 15:15
		Deep Learning Model to Determine Laser Irradiation Conditions for the Formation of Nano-Periodic Structure Ryouta Masuda, Yoshio Hayasaki, Satoshi Hasegawa Center for Optical Research and Education, Utsunomiya University In this study, we constructed a deep learning model predicting scanning electron microscope (SEM) images of nano-periodic structures on silicon substrates corresponding to selected laser irradiation conditions. This learning model enables us to estimate the nano-periodic structures before the processing, which aids in rapid optimization of the laser irradiation conditions.	Output Pulse Control of CW-Pumped Nd:YVO₄/Cr:YAG Microchip Laser Rakesh Bhandari, Shota Sekiguchi, Xiaomin Wang, Tadashi Hajikano, Yuichi Takushima <i>Optoquest Co. Ltd.</i> We report, for the first time, control of the output-pulse-energy characteristics of a CW-pumped, high-repetition-rate Nd:YVO₄/ Cr:YAG microchip laser, by using the large reduction of the stimulated emission cross-section of the Nd:YVO₄ crystal on increasing its temperature.

Study of astrophysical collisionless shocks in the laboratory

CONFERENCE PROGRAM

ALPS & HEDS & XOPT <Room 303>

Hve-Sook Park¹, Eleanor R, Tubman², Frederico Fiuza³, Drew P. Higginson¹, David J. Larson¹, Mario Manuel⁴, Kasper Moczulski5, Michael Pokornik6, Bradley B. Pollock¹, George F. Swadling¹, Petros Tzeferacos⁵

¹Lawrence Livermore National Laboratory. Livermore, CA USA, ²Imerial College, London, UK, ³Instituto Superior Tecnico, Lisbon, Portugal, ⁴General Atomics, Sandiego, CA, USA, ⁵University of Rochester, Rochester, NY, USA, 6University of California, San Deigo, CA, USA

High Mach number astrophysical plasmas creates collisionless shocks via plasma instabilities that are responsible for cosmic ray acceleration. A series of laboratory experiments were conducted on Omega and the National Ignition Facility to observe: the Weibel instability; collisionless shock formation; and electron acceleration. In addition to the case of unmagnetized condition, shock formation under magnetized environment is also being studied.

Invited ALPS19-02 15:15

Yb:fiber laser comb on silica in 1 GHz line spacing

Oral, Wednesday, 24 April

ALPS <Room 511+512>

PM

BFSS <Room 413>

Ruoao Yang, Duo Pan, Jingbiao Chen, Aimin Wang, Zhigang Zhang Peking University We demonstrated a compact and integrated Yb:fiber laser frequency comb bonded on fused silica bricks in 1 GHz mode spacing. A signal-to-ratio of > 45 dB of f_{CEO} was stabilized over days.

ALPS19-03 15:30

Pedestal-suppressed spectral peak generation and amplification using nonlinear fiber loop mirror with molecular gas cell and fiber Raman amplifier

Norihiko Nishizawa, Yui Ozawa Shotaro Kitajima Nagova University Pedestal suppressed, intense spectral peak generation was demonstrated using nonlinear fiber loop mirror with gas cell and fiber Raman amplifier. Intense spectral peak with 1 mW average power and 45 dB SBR was generated successfully.

[BFSS-CL] 15:45-15:55 Closing Remarks Chair: Rie H. Kang GPI

BISC <Room 419>

[BISC4] 15:00-16:00 Session 4 Chair: Yasuaki Kumamoto

Osaka University

BISC4-01 15:00

Optimization of All-Optical Physiology by Two-Photon Holographic Microscope for Avoiding Crosstalk Problem

Priyanka Gore¹, Manoj Kumar², Naru Yoneda², Osamu Matoba², Mitsuhiro Morita¹ ¹Department of Biology, Kobe University Graduate School of Science, ²Center of Optical Scattering imaging Science, Kobe University All-optical physiology to study neuronal network in the brain through Ca2+ imaging and optogenetic stimulation using twophoton holographic microscope was optimized for avoiding crosstalk, which is the artificial activation of opsins by imaging laser.

BISC4-02 15:15

In-vivo intelligent fluorescence sectioning using meta-varifocal endo-microscopy

Yu-Hsin Chia^{1,2}, Cheng Hung Chu³, Sunil Vyas², Yi-You Huang^{1,2,4}, Din Ping Tsai^{5,6,7}, Yuan Luo^{2,3,8}

¹Department of Biomedical Engineering, National Taiwan University, Taipei, 10051, Taiwan, ²Institute of Medical Device and Imaging, National Taiwan University, Taipei, 10051, Taiwan, ³YongLin Institute of Health, National Taiwan University, Taipei, 10087, Taiwan, ⁴Department of Biomedical Engineering, National Taiwan University Hospital, Taipei, 10051, Taiwan, ⁵Department of Electrical Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, 6Centre for Biosystems, Neuroscience and Nanotechnology, City University of Hong Kong, Kowloon, 999077, Hong Kong, ⁷The State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Kowloon, 999077, Hong Kong, 8Program for Precision Health and Intelligent Medicine, National Taiwan University, Taipei, 106319, Taiwan Here, we propose an in-vivo intelligent fluorescence sectioning using meta-varifocal endo-microscopy. With the telecentric design, the endo-microscopy can provide constant magnification during axial scanning for in-vivo 3D imaging of mouse brains. Furthermore, we introduce the deep learning (DL) network for HiLo sectioning technique, which can substantially reduce image acquisition time and system complexity.

BISC4-03 15:30

Invited

Ultrathin Endoscopy for the Detection of Vessel Blocks

Yongkang Zhang, Zhixiang Zhang, Lipei Song Nankai University

Stroke is one of the leading courses of death and disabilities. Various researches have been focusing on the detection and treatment of it. However, current imaging methods for detecting stroke have either limited resolution or tip size, because of which they are not suitable for small vessels that are important in the research on stroke treatment. We developed an ultrathin endoscopy method to image the blocks in vessels of a couple of microns in diameter.

ICNN <Room 414+415>

IP <Room 302>

[IP4] 15:00-15:45 Fourier Optics / Device

Chairs: Eriko Watanabe The University of Electro-Communications Suguru Shimomura Osaka University

ICNN8-05 15:00

Novel Applications of Binocular Meta-lens

Xiaoyuan Liu^{1,2}, Mu Ku Chen^{1,2,3}, Takuo Tanaka^{4,5,6}, Din Ping Tsai^{1,2,3} ¹Department of Electrical Engineering, City University of Hong Kong, ²The State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, ⁸Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, ⁴Innovative Photon Manipulation Research Team, RIKEN Center for Advanced Photonics, ⁵Metamaterial Laboratory, RIKEN Cluster for Pioneering Research, ⁶Institute of Post-LED Photonics, Tokushima University

We have developed a series of intelligent binocular meta-lens systems with novel applications of particle image velocimetry, underwater stereo vision, edge-enhanced depth perception for ill-posed regions, and assisted driving vision.

[ICNN-CL] 15:15-15:25 Closing Remarks Chair: Shinji Matsuo

IP4-01 15:00

Design of quantum dot networks for improving the performance of reservoir computing

Kazuki Yamanouchi, Suguru Shimomura, Jun Tanida *Osaka University*

Usaka University We designed Quantum dot networks (QDNs) with effective fluorescence signals for improving the performance of the QD reservoir computing. The signal diversity of the designed QDNs and the prediction performance of time-series data were evaluated.

IP4-02 15:15 Vortices in two-point correlation function

Akanksha Gautam, Rakesh Kumar Singh Indian Institute of Technology, BHU, Varanasi We present a method to generate a helical phase structure in two-point correlation function using the polarization basis of light. The method is based on the van Cittert– Zernike theorem, establishing a connection between an incoherent source and the two-point correlation function in the far-field. Experimental measurement of the helical phase in the two-point complex correlation function is carried out by a radial shearing interferometer.

IP4-03 15:30

Single-shot digital holographic reconstruction based on iterative phase retrieval framework with adaptive constraints

Danlin Xu, Zhengzhong Huang, Liangcai Cao Department of Precision Instruments, Tsinghua University

An advanced iterative phase retrieval method for single-shot in-line digital holographic imaging is proposed. The incorporation of adaptive constraints generated by morphological filtering permits high-fidelity reconstruction and optimized convergence behavior.

LEDIA <Room 211+212>

LSC <Room 421>

LEDIA3-02 15:30

Aperture dimeter dependences of highly efficient GaN VCSELs with well-controlled cavity lengths Mitsuki Yanagawa, Ruka Watanabe,

Kenta Kobayashi, Taichi Nisikawa, Tetsuya Takeuchi, Satoshi Kamiyama, Motoaki Iwaya *Meijo University*

We demonstrated highly efficient GaN VCSELs with well-controlled cavity lengths by a combination of in situ and ex situ controls. More than 20% wall plug efficiency and 10mW light output power were obtained from a 5-µm aperture VCSELs.

LEDIA3-03 15:45

Epitaxial growths of highly efficient GaN VCSELs with in situ cavity length control and GalnN underlaying layers Taichi Nishikawa, Kenta Kobayashi,

Ruka Watanabe, Mitsuki Yanagawa, Tetsuya Takeuchi, Satoshi Kamiyama, Motoaki Iwaya *Meijo University*

We established epitaxial growths of highly efficient GaN VCSELs by using in situ thickness control technique and GalnN underlying layers. The VCSEL wafer resulted in more than 20% wall plug efficiency and 10mW light output power.

LSC2-03 15:20 Invite Ultrafast and ultrasmall: all-optical switching of magnetization Clemens von Korff Schmising

Max Born Institut, Berlin We combine laboratory and FEL-based experiments to explore the fundamental temporal and spatial limits of all-optical magnetization reversal in GdFe alloys. We find write/erase-cycles of <7 ps and magnetic bit size down to 25 nm.

Development of a high-order harmonic

generation apparatus using in-house ultrashort pulse laser for spin-

¹University of Hyogo, ²QST, ³Institute of Laser

High-order harmonic generation (HHG) in the

extreme ultraviolet (XUV) wavelength region

femtosecond laser pulses onto a gas. This

can be generated with relatively small

technique is also beneficial because the UXV

laboratory-scale equipment. In this talk, we

will report on the observation of HHG using

an ultrashort pulsed infrared laser as a light

Yuto Shiokawa1, Ryunosuke Takahashi1,

dynamics measurements

Suguru Nakata¹, Nobuhisa Ishii²,

Engineering, Osaka University

is generated by focusing intense

LSC2-04 15:40

Hiroki Wadati^{1,3}

source.

Invited Chair: Shigeharu Moriya

LSSE7-01 15:30 In Characterization of plant mutants

[LSSE7] 15:30-16:00 Agri-Photonics 2

using photonics technologies Tomoki Matsuyama, Norihito Saito,

LSSE <Room 316>

Satoshi Wada RIKEN Center for Advanced Photonics

We have generated plant mutants using physical mutagens such as ion-beams. In this study, we will demonstrate photonics technology to discover the hidden traits of the resulting mutants and develop them into agriculturally useful cultivars.

OMC <Room 418>

Invited OMC8-03 15:30

Mode conversion of high-peak-power and high-order structured pulsed beams in a near-hemispherical cavity Pi-Hui Tuan, Shu-Cheng Liu

National Chung Cheng University Beam transformation of high-order and

high-peak-power structured pulses created by an Nd:YV04/Cr⁴:YAG laser in a nearhemispherical cavity is explored to offer complex pulsed fields with diverse phase singularity arrays for potential applications.

OMC8-04 15:45

Fabrication of helical polymeric structures using an optical vortex Kenta Homma¹, Yasushi Tanimoto², Kyoko Masui², Ryosuke Isobe¹, Yoshihisa Matsumoto², Chie Hosokawa², Takashige Omatsu³, Michiya Matsusaki¹ 'Osaka Uhiversity, 'Osaka Metropolitan

University, ³Chiba University Helical structures are abundant in our body. Yet, the effects of helical structures on tissue functions remain elusive. Herein, we utilized an optical vortex to fabricate biocompatible polymeric scaffolds with helical structures via photo-initiated radical polymerization chemistry. Helical scaffolds may provide a novel means to investigate how helical structures affect tissue functions.

SLPC <Room 416+417>

TILA-LIC <Room 315>

SLPC8-03 15:30

Prediction of the Laser Absorption Threshold Using Deep MLP-CNN Model in Laser Cleaning

Konika Rani, Norimasa Ozaki, Kazumune Hashimoto, Ryosuke Kodama, Yoshihiro Miyake, Hirotaka Nakamura, Hideo Nagatomo Osaka University

Our research presents a novel hybrid model (MLP-CNN) designed for predicting the laser absorption threshold of various materials in laser cleaning techniques. This pioneering research offers significant contributions for future predictive modeling in laser-material interactions, with potential applications extending to materials engineering and laser surface processing.

TILA-LIC4-04 15:30 Invited

Ultrafast 1-µm waveguide lasers and their phase noise and timing jitter characteristics

Fabian Rotermund KAIST, South Korea

We demonstrate ultrafast mode-locked low-noise waveguide lasers operating at GHz-level fundamental repetition rates. Femtosecond-laser-inscribed Yb:KLuW channel waveguide lasers with tunable cavity lengths generate femtosecond pulses near 1030 nm. Their timing jitter and phase noise characteristics with varied cavity parameters will be reported in this talk.

Oral, Thursday, 25 April AM

ALPS <Room 303>

[ALPS20] 9:00-10:15 Optical frequency combs / Frequency stabilized lasers and applications (3) Chair: Naoya Kuse Tokushima Univ

TUKUSHIIHA U

ALPS20-01 9:00

Centre of Excellence in Optical Microcombs for Breakthrough Science: a new wave of photonic solutions Arnan Mitchell

Invited

RMIT University

This talk will introduce our newly established research centre exploring the science and technology of optical microcombs and particularly the diverse applications that accessible, reliable, and low-cost photonic chip frequency combs can enable.

> [ALPS24] 9:15-10:15 Quantum optics and their applications (1) Chair: Ryo Okamoto Kyoto University

ALPS <Room 511+512>

ALPS20-02 9:30

Decision making using a chaotic microresonator frequency comb Jonathan Cuevas¹, Ryugo Iwami², Atsushi Uchida², Kaoru Minoshima^{1,3}, Naoya Kuse¹

¹Tokushima University, ²Saitama University, ³The University of Electro-Communications We introduce and showcase the application of a chaotic microresonator frequency comb in resolving multi-armed bandit problems, employing its comb modes to create a series of temporal chaotic waveforms.

ALPS20-03 9:45

Experimental and numerical investigation of blue- and reddetuned dissipative Kerr solitons in coupled-microresonators Kenji Nishimoto¹, Kaoru Minoshima², Naova Kuse³

¹ Tokushima University, ²The University of Electro-Communications, ³Institute of Post LED Photonics

We explore blue- and red-detuned dissipative Kerr soliton generation in coupled-ring microresonator with avoided mode crossing at the pump mode, achieving enhanced power efficiency and spectral broadening.

ALPS24-02 9:45

Biphoton spectral reconstruction with delay-line-anode single-photon imagers

Ozora Iso¹, Kensuke Miyajima², Ryosuke Shimizu¹

¹The University of Electro-Communications UEC, ²Tokyo University of Science TUS We report the biphoton spectrum measurement with two delay-line-anode single-photon imagers. The system acquired picosecond-scale temporal information and achieved an efficient measurement time without the pixel-scanning procedure.

ALPS24-03 10:00

Pathway selectivity in time-resolved spectroscopy by coincidence counting of quantum entangled photons Yuta Fujihashi¹, Akihito Ishizaki^{2,3},

Ryosuke Shimizu¹ ¹The University of Electro-Communications, ²Institute for Molecular Science, ³SOKENDAI We theoretically propose time-resolved spectroscopy based on the coincidence counting of entangled photon pairs. We demonstrate that the use of two-photon counting detection enables the selective elimination of the excited-state absorption signal. BISC <Room 419>

[BISC5] 9:00-10:15 Session 5 Chair: Tom Vettenburg University of Dundee

BISC5-01 9:00

Diattenuation imaging of artificial and biological samplesusing polarizationstructured spot array

Taiki Suzaki, Yusuke Ogura, Jun Tanida Osaka University

In this study, we aim to develop a polarization imaging method, using a polarization-structured spot array as illumination. To assess the capability, we measured the diattenuation distribution of artificial and biological objects as samples. Experimental results demonstrated that our method is effective to measure diattenuation in a single shot.

BISC5-02 9:15

Plasmonic imaging for transparent nanoparticle characterization Wei-Chuan Shih

University of Houston University of Houston Characterization of transparent nanoparticles faces fundamental challenges in resolution and detection. We demonstrate <u>P</ u><u>A</u>>monic <u>N</u>an<u>O</ u>-ape<u>R</u>true I<u>A</u>bel-free i<u>MA</u>ging (PANORAMA) for single exosome counting and profiling in the context of early cancer detection and diagnosis.

BISC5-03 9:30

The Modified SE(2) CNN: Geometric Deep Learning for Classifying Magnetic Resonance Imaging of Brain Tumor Clara Lavita Angelina^{1,2}, Sunil Vyas³,

Fu Ren Xiao3, Yuan Luo3,4,5 Hsuan Ting Chang^{1,3} ¹Department of Electrical Engineering, National Yunlin University of Science and Technology, ²Graduate School of Engineering Science and Technology, National Yunlin University of Science and Technology, 3 Institution of Medical Device and Imaging, National Taiwan University, ⁴YougLin Institute of Health, National Taiwan University, ⁵Program for Precision Health and Intelligent Medicine, National Taiwan University Early-stage brain tumor detection is crucial for survival. This research uses a modified SE(2) CNN for MRI brain tumor categorization. Trained on 2611 scans in five classes, the model excels in binary classification, especially in AVM vs. non-AVM, with high accuracy and F1 score. It also identifies Meningioma, Pituitary, Metastases, and Schwannoma, with metrics over 0.5.

BISC5-04 9:45

Invited

Enhanced High-Speed Three-Photon Fluorescence Imaging by Optimized Cr:Forsterite Laser

Shih-Hsuan Chia, Chen Chi-Wen, Je-Chi Jang National Yang Min Chiao Tung University, Taiwan

This manuscript reports on the utilization of a Cr:Forsterite laser for high-speed three-photon fluorescence imaging in transgenic fruit flies. Through this approach, we achieved a remarkable tenfold increase in signal-to-background ratio at various depths, facilitating whole brain imaging in comparison to conventional two-photon methods.

	Oral, Thursday	y, 25 April AM	
HEDS <room 311+312=""></room>	IP <room 414+415=""></room>	LDC <room 301=""></room>	LEDIA <room 211+212=""></room>
[HEDS7] 9:00-10:05 Particle Acceleration 1 Chair: Yasuhiro Kuramitsu Osaka University		[LDC8] 9:00-10:45 Novel and Emerging Technologies Chairs: Masato Ishino <i>Osaka Univ.</i> Martin Pfennigbauer <i>RIEGL</i>	[LEDIA4] 9:00-10:30 u-LED others Chair: S. Ichikawa <i>Osaka University</i>
EDS7-01 9:00 Invited		LDC8-01 9:00 Invited	LEDIA4-01 9:00
HEDS7-01 9:00 Invited On parallels and anti-parallels (the similarities and differences) between particle acceleration in space and in laser plasma Sergey Bulanov Extreme Light Infrastructure ERIC, ELI Beamines Facility, Za Radnici 835, 25241 Dolni Brezany, Czech Republic The talk is devoted to the prospects of using the laser radiation interaction with plasmas in the laboratory relativistic astrophysics context. We discuss basic features of charged particle acceleration during magnetic field line reconnection and at the shock wave front when the radiation friction effects become dominant.	[IP5] 9:15-10:30 Computational Imaging 1 Chair: Yasuhiro Mizutani <i>Osaka University</i>	New developments of laser beam application equipment From laser show content to bird prevention Okudaira Yoshihiro VenusLaser inc. Introduces the latest applications and potential of laser beam technology, extending from the entertainment to the agricultural sector.	Dependence of stray light in monolithic GaInN-based µLED arrays on sapphire substrate thickness Naoki Hasegawa, Tatsunari Saito, Yoshinobu Suehiro, Satoshi Kamiyama, Motoaki Iwaya, Tetsuya Takeuchi <i>Meijo University</i> Stacked GaInN-based monolithic LED arrays are expected to be applied to AR/VR displays because of their high integration and high brightness. Therefore, it is necessary to take appropriate countermeasures against stray light. In this study, we investigated the dependence of stray light on sapphire substrate thickness. As a result, we confirment that changing the sapphire substrate film thickness of the elements causes a large difference in stray light patterns.
	IP5-01 9:15 Invited		LEDIA4-02 9:15
	Artificial Neural Network in Lensless Computational Imaging Chung-Hao Tien National Yang Ming Chiao Tung University Lensless imaging provides an alternative to imaging system, thereby reducing the cost and form factor. In this study, we exploited the advantages of deep neural networks (DNNs) to perform multiple downstream visual tasks, including scene reconstruction and face recognition for modulated scenes.		Heterogeneous Integration of InGaN micro-LED Display and Shift-Register IC Chips Hao Lyu, Hoi Wai Choi The University of Hong Kong This work reports on the heterogeneous integration of a GaN-on-Si micro-LED display with shift-registers at the chip-level, effectively reducing the number of pinouts.
		LDC8-02 9:30 Invited	LEDIA4-03 9:30
		Research activities on free-space and underwater optical communications Yoshihisa Takayama <i>Tokai University</i> The progresses of free-space optical communications and underwater optical communications are presented with focusing on the used wavelengths. The impact on optical communication systems when the fluctuating field becomes a signal path is explained.	Low Level Light Device Combined with Electromagnetic Fields for Alopecia Therapy Po-Wen Wang, Cheng-Yang Liu National Yang Ming Chiao Tung University This study indicates that laser or light- emitting diode (LED) light treatments are suitable to enhance hair growth. Furthermore, we present the combination of LED and electromagnetic fields (EMF) stimulations for better treatment results of alopecia. The thicknesses of new hair and hair follicles have both enlarged. The new hairs have a slower growth period for the quantity; however, they have also sprouted and formed a denser spread in the forehead
IEDS7-02 9:40 Invited			
nvestigating ion acceleration at adiation pressure driven shocks using nid-IR lasers			
vicholas Dover ¹ , Oliver Ettlinger ¹ , Marcus Babzien ² , Mikhail Polyanskiy ² ,	IP5-02 9:45		LEDIA4-04 9:45
gor Pogorelsky ² , Zulfikar Najmudin ¹ The John Adams Institute for Accelerator	Wavefront sensing with single pixel imaging		Deep and Shallow Etching of AlGaN/ GaN Heterostructures using

Science, Imperial College London, ²Accelerator Test Facility, Brookhaven National Laboratory We will discuss recent experiments using a high power mid-IR laser to irradiate near-critical density plasma. We investigated radiation pressure and collisionless shockwave acceleration, laser channelling, and the formation of Weibel-like electron beam filaments.

imaging

Naohiro Kobayashi, Keito Kiyama, Kouichi Nitta, Osamu Matoba Kobe University Single pixel imaging is applied to a Shack Hartmann type wavefront sensor. An experimental system for the proposed method is constructed and verified. From experimental results, it is confirmed that the constructed system provides a desired set of spot patterns.

GaN Heterostructures using Contactless Photo-electrochemical (CL-PEC) Technique

Y. Oki, T. Togashi, N. Shiozawa, R. Ochi, T. Sato Research Center for Integrated Quantum Electronics, Hokkaido University

Contactless photo-electrochemical (CL-PEC) etching is performed by immersing a sample with a cathode pad in a solution containing an oxidant and irradiating it with ultra-violet (UV) light. It is very simple set-up and is one of the light. It is very simple set-up and is one of the most promising wet etching techniques for nitride semiconductors such as GaN and AlGaN. In this study, we have demonstrated the deep and shallow etching of AlGaN/GaN structures by optimizing the CL-PEC conditions.

Thu, 25 April, AM

	Oral, Thursday	, 25 April AM	
LSC <room 421=""></room>	LSSE <room 316=""></room>	OMC <room 418=""></room>	OWPT <room 304=""></room>
[LSC3] 9:00-10:15 Photoemission, absorption, scattering (1) Chair: Takeshi Suzuki <i>University of Tokyo</i>		[OMC9] 9:00-10:15 Session 7 Chairs: Keiji Sasaki <i>Hokkaido University</i> Sile Nic Chormaic <i>OIST</i>	
LSC3-01 9:00 Invited		OMC9-01 9:00 Invited	
Fermi surface nesting driving the RKKY interaction in centrosymmetric skyrmion magnets.		Sculpted light in quantum and bio. Halina Rubinsztein-Dunlop The University of Queensland	
Takeshi Kondo ISSP, University of Tokyo Magnetic skyrmions are topologically non-trivial particles with swirling spin texture in real space. In recent years, the topological state has been gaining tremendous attention as a next-generation medium leading toward future spintronic applications. We present the first observation of the intrinsic electronic structure of the most well-acknowledged	[LSSE8] 9:17-10:47 Sculpted light has e choice to produce of confining potentials micro-scale. Applica range from imaging sensors, quantum a drividal Lasers Chairs: Toshikazu Ebisuzaki RIKEN range from imaging sensors, quantum a tweezers. It provides ever more complex LSSE8-01 9:17 Invited	Sculpted light has emerged as the tool of choice to produce configurable and flexible confining potentials at the nano- and micro-scale. Applications of sculpted light range from imaging, quantum devices and sensors, quantum atom optics, and optical tweezers. It provides means of production of ever more complex potential landscapes.	
centrosymmetric skyrmion magnets by ARPES. LSC3-02 9:20 Invited Spin- and angle-resolved	Contribution of Nanosecond Pulse Laser Development for the Capture and Removal of Space Debris Kazuki Matsuo EX-Fusion Inc.	(SLMs) or digital micromirror devices (DMD).	[OWPT5] 9:30-10:30 Session 5 Chair: Noriyuki Yokouchi Furukawa Electric
photoemission spectroscopy on Bi-based high-temperature cuprate	With the recent technological advancements	OMC9-02 9:30	OWPT5-01 9:30
superconductors Hideaki lwasawa National Institutes for Quantum Science and Technology We will present a spin-resolved ARPES study on Bi-based high-T _c cuprate superconductors. The results call for a revision of the simple application of the spin-orbit interaction within the standard framework of the Rashba interaction.	in lasers, especially the enhancement of high-power pulse lasers, the possibility of using ground-based lasers to capture and remove space debris has become increasingly feasible. This presentation will provide an overview of the required performance.	Detection of a variety of DNA sequences via optical condensation of multiple-sized particles at the solid-liquid interface Shuichi Toyouchi ^{1,2} , Seiya Oomachi ^{1,2,3} , Ryoma Hasegawa ^{1,2,3} , Kota Hayashi ^{1,2,3} , Yumiko Takagi ^{1,2} , Mamoru Tamura ^{1,4} , Shiho Tokonami ^{1,3} , Takuya lida ^{1,2} ' <i>Osaka Metropolitan University, RILACS,</i> <i>²Osaka Metropolitan University, Department of</i> <i>Physics, Graduate School of Science, ³Osaka</i> <i>Metropolitan University, Department of Applied</i> <i>Chemistry, Graduate School of Engineering,</i> <i>⁴Osaka University, Department of Material</i> <i>Engineering Science, Graduate School of</i> <i>Engineering Science</i>	Power-over-Fiber Applied for In-F Entertainment System Joao Batista Rosolem ¹ , João Roberto Nogueira Júnior ¹ , Fábio Renato Bassan ¹ , Carla Cristiane Fi Alexandre Barbosa dos Santos ² , Leonardo Martins Wollinger ² , Pedro Jun Nagano ² , Jose Juliano Fiorett Luiz Augusto Rodrigues Nerosky ² , Marcelo Prado de Oliveira ² 'CPQD - Research and Development Ce Telecommunications, ² Embraer This work describes a video and powe transmission system using optical fibe (PoF) for in-flight entertainment system applications. In the experimental
LSC3-03 9:40 Invited Time- and angle-resolved		We reveal that light-induced acceleration of DNA hybridization can be accelerated by optical condensation of multiple-sized particles modified with probe DNA and target DNA at solid-liquid interface. By applying this mechanism, we detected a single mutation in DNA with just 5 minutes of light irradiation. The obtained results provide a rapid, sensitive, and cost-effective analysis of a variety of DNA sequences using optical	demonstration it was used a laser with optical power operating at 808 nm. Tw GaAs photovoltaic converters were us produce electrical energy for one vide monitor and one optical video receiver power and video signals were transmi using two 50-m multimode fibers.

Time- and angle-resolved photoemission spectroscopy for nonequilibrium excitonic state in bulk WSe₂

Katsuya Oguri¹, Ryo Yoshioka^{1,2}, Kohei Nagai¹, Yashushi Shinohara¹, Takuya Okamoto¹, Yoji Kunihashi¹, Keiko Kato³, Hiroki Mashiko⁴, Yoshiaki Sekine¹, Hiroki Hibino⁵ Ikufumi Katayama², Jun Takeda², Haruki Sanada1

¹NTT Basic Research Labs., NTT Corporation, ²Yokohama National University, ³Nagoya University, ⁴The University of Tokyo, ⁵Kwansei Gakuin University

We report an observation of the dynamical behavior of exciton generated at the K point during the optical excitation and the intervalley scattering in layered 2H- WSe2 by using Tr-ARPES with 30-fs near infrared pump pulse.

LSSE8-02 9:47 Invited Free Space OptComm as a Solution for Further Growth of the Earth **Observation Industry**

Hirokazu Mori WARPSPACE CSO

This presentation intends to introduce the Earth observation (EO) industry and use cases of EO data, the bottleneck in the EO industry, and free space optical communication technology as one of the solutions.

OMC9-03 9:45

force and photothermal effect.

Circular dichroism of chiral plasmonic nanoparticles dispersed in solution grown by circularly polarized light Koichiro Saito, Yoshie Ishikawa

National Institute of Advanced Industrial Science and Technology (AIST) In this study, we report on the chirality of a dispersion of gold nanorods with silver grown on the surface (AuNR@Ag) by circularly polarized light. The AuNR@Ag dispersions synthesized by left and right circularly polarized light showed circularly dichroism spectra that were roughly symmetrical to each other. Since the AuNR@ Ag are dispersed in solution, the result suggest that three-dimensional chiral silver nanostructures have grown on the AuNR.

SLPC <Room 416+417>

[SLPC9] 9:00-10:15 Cladding / Laser Metal Depostion/ **Cutting and Cleaning** Chairs: Yasuhiro Okamoto

Okayama University Yorihiro Yamashita National Institute of Technology, Ishikawa College

SLPC9-01 9:00 Laser Cladding of WC-CrMnFeCoNi

HEA Cemented Carbides

Takahiro Kunimine¹, Kaito Ebihara¹ Tatsuya Sakurai¹, Yorihiro Yamashita ¹Kanazawa University, ²National Institute of Technology, Ishikawa College A high-entropy alloy (HEA) was applied to an alternative binder for the WC-Co cemented carbide as an attempt to seek enhanced mechanical properties. In the experiment, a CrMnFeCoNi HEA, which was the most well-known HEA, powder was used as a binder to fabricate WC-HEA cemented carbides by multi-beam laser directed energy deposition (L-DED).

SLPC9-02 9:30

Application of Laser Metal Deposition to Brittle Brazing Filler Metal Powder Feeding Method

Kotaro Matsu, Yoshihisa Sechi, Kohei Fukuda Tokyo Braze Co., Ltd.

Brittle brazing alloys such as nickel alloy are difficult to process. So, we have applied laser metal deposition as a brittle brazing filler metal powder feeding method and evaluated the brazeability of the joints.

Oral, Thursday, 25 April AM

XOPT <Room 313+314>

PLENARY SESSION & TUTORIAL

Invited

RIKEN SPring-8 Center, Sayo-gun, Japan

TILA-LIC <Room 315>

TILA-LIC5-01 8:30

[TILA-LIC5] 8:30-10:15

Chair: Takunori Taira

TILA-LIC5-02 9:30

Independent optical engineer

Thomas J Kane

and in space.

The Nonplanar Ring Oscillator at Forty

The history of the nonplanar ring oscillator

detection of gravitational waves on Earth

1983 through its ongoing role in the

(NPRO) will be described, from its conception

TBD Franz Kärtner

Invited

University of Hamburg, DESY, Hamburg, Germany TBD

[XOPT6] 9:00-10:30 Imaging1 Chair: Takashi Kimura The University of Tokyo

XOPT6-01 9:00 Invited X-ray Spectroscopic Ptychography: **Current Status and Future Perspectives** Yukio Takahashi¹

¹Tohoku University, ²RIKEN SPring-8 Center X-ray spectroscopic ptychography, which combines X-ray ptychography and X-ray absorption fine structure spectroscopy, is a promising tool for visualizing both the structure and chemical state of bulk materials at the nanoscale. High-resolution X-ray spectroscopic ptychography measument system developed at SPring-8 and its applications will be introduced, and the prospects for the use of NanoTerasu will be discussed.

Invited XOPT6-02 9:30

Ptychography at MAX IV studying samples, beams and optics

Invited

Maik Kahnt¹, Ulf Johansson¹ Sebastian Kalbfleisch¹, Ann E. Terry¹, Antara Pal^{1,2}, Mikhail Lyubomirskiy³ Louisa Pickworth¹, Jörg Schwenke¹ Igor Beinik¹, Rebecka Lexelius⁴, Karina Thånell¹ MAX IV Laboratory, Lund University, ²Department of Chemistry, Physical and theoretical Chemistry, Lund University, 3Center for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, ⁴Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology Uppsala University We present how we use X-ray ptychography to study samples, the X-ray beams properties and the X-ray optics used to create it.

SLPC9-03 9:45

Development of fuel cell bipolar plate manufacturing laser system and research on cutting performance

Su Jin Lee1, Jung-Lo Yoon1, Goo Cheol Kwon2, In Duck Park1

¹Korea istitute of Machinery & Materials, ²K-lab Laser&Control

Recently, various eco-friendly energy technologies are being developed, and especially fuel cell technology is attracting attention because of eco-friendly and highly efficient. It is being developed and utilized in a variety of ways, including fuel cells for buildings, power generation, and transportation, and in particular, the spread of fuel cells used in transportation devices such as automobiles, ships, and aircraft is expected to increase.

	Oral, Thursday	y, 25 April AM	
ALPS <room 303=""></room>	ALPS <room 511+512=""></room>	BFSS	BISC <room 419=""></room>
ALPS20-04 10:00			
Microresonator soliton frequency combs via cascaded Brillouin scattering			
Hao Zhang ^{1,2} , Shuangyou Zhang ² , Toby Bi ^{2,3} ,			
George Ghalanos ² , Yaojing Zhang ² ,			
Haochen Yan ^{2,3} , Arghadeep Pal ^{2,3} , Jijun He ¹ ,			
Shilong Pan ¹ , Pascal Del'Haye ^{2,3}			
¹ National Key Laboratory of Microwave Photonics, Nanjing University of Aeronautics			
and Astronautics, ² Max Planck Institute for the			
Science of Light, ³ Department of Physics, Friedrich			
Alexander University Erlangen-Nuremberg			
We present Kerr soliton generation via a			
forward propagating second order Brillouin			
scattering process in a microresonator. The			
solitons repetition rates are independent from the Brillouin gain frequency shift (~10			
GHz in fused silica).			
·			
Coffee Break 10:15-10:30	Coffee Break 10:15-10:30		Coffee Break 10:15-10:45

[ALPSp2] 10:30-12:00 ALPS Poster Session 2 <exhibition a="" hall=""></exhibition>	[BFSSp] 10:30-12:00 BFSS Poster Session <exhibition a="" hall=""></exhibition>	
Poster session program p.145-	Poster session program p.148	[BISC6] 10:45-12:15 Session 6 Chair: Yasuhiro Awatsuji Kyoto Institute of Technology BISC6-01 10:45 Invited Quantitative Phase Microscopy with Partially Spatially Coherent Light: Ultra-high Spatial Phase Sensitivity and Large Space Bandwidth Product Dalip Singh Mehta Indian Institute of Technology Delhi, India We report coherent-noise free phase microscopy with an order of magnitude improved spatial phase sensitivity, space-bandwidth product and high stability. The technique was utilized for sperm cells, macrophages, and RBCs for precise phase measurement.

Oral, Thursday, 25 April AM

HEDS <Room 311+312>

IP5-03 10:00

Anisotropic Scattering Imaging with Multi-Channel Ghost Imaging Shoma Kataoka, Yasuhiro Mizutani,

IP <Room 414+415>

----- Coffee Break 10:05-10:25 -----

Kentaro Oda, Tsutomu Uenohara, Yasuhiro Takaya

Osaka University

IP5-04 10:15

Universitv

Our proposed multi-channel ghost imaging (MCGI) obtains the anisotropic scattered light distribution by performing GI from multiple angles with numerous detectors. The reconstructed images with each detector correspond to the scattering distribution of the angle.

Single pixel magnetic-field imaging with optically pumped magnetometer

Shuji Taue¹, Yuta Takizawa¹, Reiji Okawa¹

Yukinobu Hoshino¹, Teruyoshi Sasayama² ¹Kochi University of Technology, ²Kyushu

We demonstrate magnetic field imaging

from magnetic nanoparticles. An optically pumped magnetometer is used to detect an

excitation field and a signal field from the

particles. The magnetic field images was

acquired using the single pixel imaging

The signal field images clearly show the

positions of the particles.

technique with a digital micro-mirror device.

----- Coffee Break 10:30-11:00 ----- LDC8-04 10:30

LDC <Room 301>

LDC8-03 10:00

Latest developments on Airborne LiDAR Bathymetry - technology and applications

Martin Pfennigbauer¹, Koichi Sasaki², Ursula Riegl¹, Marcos Garcia³ RIEGL Research Forschungsgesellschaft mbH, ²RIEGL Japan LTD, ³RIEGL Asia Pacific Ltd Bathymetric LiDAR enables the efficient surveying of coastal zones, riverine environments and lakeshores with high spatial resolution and accuracy. An overview of the employed technologies and the achievable performance for different applications is provided.

Laser beam shooting technology for

Hiroshi Fuji, Kana Fujioka, Kazuhisa Yamamoto

control system using a semiconductor laser and camera. This system does not require

pesticides. This system detects the moth's flying position using camera and fires a laser

pulse beam at that position to shoot the

----- Coffee Break 10:45-11:00 -----

the beam is focused on the target of

detection.

Naohisa Yamamoto, Soichiro Nishiguchi,

Last year, we proposed a physical pest

physical pest control

Institute of Laser Engineering

LEDIA <Room 211+212>

Invited LEDIA4-05 10:00

Development of MicroLED film with vertical current injection structure R. Kanda¹, T. Kitade¹, A. Nishikawa²,

A. Loesing², H. Sekiguchi¹ ¹Toyohashi Tech, ²ALLOS By establishing the transfer process of GaN MicroLED array onto conductive materials. the MicroLED film with vertical current injection structure was realized.

LEDIA4-06 10:15

Operation Performance Size Dependence of Electroluminescent Quantum Dots Micro-LED Arrays

ChungKai Chi¹, Chien-Lin Lin¹, Jing-Teng Shi², Chih-En Chang¹, Hsin-Chieh Yu^{2,3} ¹Institute of Photonic System, College of Photonics, National Yang Ming Chiao Tung University, ²Institute of Lighting and Energy Photonics, College of Photonics, National Yang Ming Chiao Tung University, 3Dept. of Photonics and Academy of Innovative Semiconductor and Sustainable Manufacturing, National Cheng Kung University

Solution processed direct electroluminescence QLED arrays with pixel dimension below 25 um are demonstrated. When the injected current increased from 1 to 10 mA, the emission peak wavelength red-shift less than 10nm.

----- Coffee Break 10:30-10:40 -----

[LEDIA5] 10:40-11:40 Monolithic u-LED Chair: Y. Saito

Combinational integration of Eu-doped GaN and InGaN LEDs and their

Kazunobu Kojima¹ ¹Graduate School of Engineering, Osaka University, 2 Research Center for UHVEM, Osaka University

[HEDS8] 10:25-11:50 Particle Acceleration 2 Chair: Sergei Bulanov FI I-BI

HEDS8-01 10:25 Invited Theoretical modelling of ion acceleration by kJ petawatt lasers

with long-pulse and large-spot effects Natsumi Iwata Institute of Laser Engineering, Osaka University

We present a model to describe enhanced ion acceleration by kJ petawatt lasers. We derive the condition that the sheath acceleration field strength is maintained constant without depletion owing to the long-pulse and large-spot effects

HEDS8-02 10:50

Undepleted Direct Laser Acceleration

Ishay Pomerantz¹, Itamar Cohen¹, Talia Meir¹ Kavin Tangtartharakul², Lior Perelmutter¹, Michal Elkind¹, Assaf Levanon¹, Alexev V Arefiev

¹The School of Physics and Astronomy, Tel Aviv University, Tel-Aviv, 6997801, Israel, ²Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, 92093, CA, USA

I will report on our recent discovery that Direct Laser Acceleration of electrons in low-atomic number plasmas, leads to inefficient acceleration due to premature depletion of the target of its ionization electrons.

<u> Thu, 25 April, AM</u>

Toyoda Gosei LEDIA5-01 10:40 Invited

prospects for miniaturization

Shuhei Ichikawa^{1,2}, Yasufumi Fujiwara¹, moth . In this presentation, we attempted to speed up the tracking system to ensure that

> We demonstrate monolithically-stacked RGB LEDs consisting of GaN:Eu and InGaN QWs with remarkably wide color gamut. Furthermore, we show the evaluation of surface recombination processes and discuss prospects towards µ-LED applications.

Oral, Thursday, 25 April AM

LSC <Room 421>

LSC3-04 10:00

Development of time- and spinresolved electron scattering (TSRrEEELS, -RHEED)

Kaito Nishihara¹, Hiroshi Watanabe¹ Shin-ichi Kimura^{1,2} ¹Osaka University, ²Institute for Molecular Science

Using machine learning, we're developing time- and spin-resolved electron scattering measurements (TSR-EELS and -RHEED) for observing dynamics of electronic and lattice structures. This will be used for investigations of electronics, plasmonics, and spintronics.

--- Coffee Break 10:15-10:35 -----

LSSE8-03 10:17

space-data utilization

Space Compass Corporation

Tomohiro Ejiri

Space Integrated Computing Network:

Technologies can drive more realtime

Space Compass Corporation, which NTT and

SJC established in July 2022, will develop

"the Space Integrated Computing Network"

optical laser communication technologies.

to make more real-time space data available by leveraging state-of-the-art space-based

----- Coffee Break 10:47-11:00 -----

How Optical Laser Communication

LSSE <Room 316> OMC <Room 418>

Invited

OMC9-04 10:00

Real-time time-dependent density functional theory (RT-TDDFT) simulations of molecules interacting with orbital angular momentum (OAM) liaht

Takafumi Shiraogawa^{1,2}, Masahiro Ehara^{1,2} ¹Institute for Molecular Science, ²The Graduate University for Advanced Studies

The real-time time-dependent density functional theory (RT-TDDFT) simulations of molecules interacting with orbital angular momentum (OAM) light are performed. We systematically investigate the influence of OAM on electronic structures and physical properties of molecules at atomic resolution in the time domain

----- Coffee Break 10:15-10:45 -----

OWPT5-02 10:00

PV Cell-Based Divider for Power-Over-Fiber Using Double-Clad Fibers Yu Miyakawa¹, Yuya Yaguchi¹, Shih-Chun Lin².

OWPT <Room 304>

Suresh Subramaniam³, Hiroshi Hasegawa⁴ Motoharu Matsuura1

¹University of Electro-Communications, ²North Carolina State University, 3 George Washington University, ⁴Nagoya University

We present a novel PV cell-based divider for power-over-fiber using double-clad fibers. The divider has a simple configuration and consists of a spatially divided system that utilizes the data signal transparency of a PV cell embedded in the divider. In this study. we evaluate the I-V and P-V characteristics of the PV cell and the transmission characteristics of data signal passed through the divider to show the feasibility of the system.

OWPT5-03 10:15

Backscattering-Based and Crosstalk-Based Monitoring Techniques for Power over Fiber Signals in Spatial Division Multiplexed Links

Rubén Altuna Pérez, Javier Barco Álvarez, Carmen Vázguez García

Universidad Carlos III de Madrid We compare two monitoring techniques based on Backscattering and Crosstalk for Power over Fiber (PoF) signals. We test them in a 7-core 250m Multicore Fiber transmitting three Fifth Generation New Radio signals and a PoF.

----- Coffee Break 10:30-11:00 -----

[LSC4] 10:35-11:45 Photoemission, absorption, scattering (2)

Chair: Hideaki Iwasawa National Institutes for Quantum Science and Technology

LSC4-01 10:35

Momentum microscopy with unique synchrotron radiation for spin and orbital characterization

Kenta Hagiwara¹, Xin Liang Tan² Ying-Jiun Chen², Christian Tusche², Claus Michael Schneider², Shigemasa Suga^{2,3}, Fumihiko Matsui1 ¹Institute for Molecular Science, ²Forschungszentrum Jülich, ³Osaka University We investigated spin and orbital dependent band structure of quantum materials by state-of-the-art spin-resolved momentum microscopy combined with circularly polarized light and dual-beamline light sources.

LSC4-02 10:55

Invited

Invited

Scanning Transmission X-ray Microscope System at SPring-8 BL23SU RI Laboratory

Goro Shibata, Yukiharu Takeda, Tohru Kobayashi, Tsuyoshi Yaita Japan Atomic Energy Agency We will introduce the scanning transmission X-ray microscope (STXM) system which was recently installed at the JAEA beamline BL23SU in SPring-8 and the scientific results so far obtained.

[OMC10] 10:45-12:00

Session 8 Chairs: Malcolm Kadodwala University of Glasgow Hiromi Okamoto IMS

OMC10-01 10:45

Photovoltaic Measurement of Quantum Hall Electron Systems under Optical Vortex Irradiation

Kenichi Oto, Hajime Hasegawa, Takashige Omatsu Chiba University The interaction between electrons and optical vortices with orbital angular momentum is investigated using a quantum Hall electron system whose the energy and spin state are well-defined by Landau quantization and Zeeman splitting

Oral, Thursday, 25 April AM				
SLPC <room 416+417=""></room>	TILA-LIC <room 315=""></room>	XOPT <room 313+314=""></room>		
SLPC9-04 10:00		XOPT6-03 10:00 Invited		
Experimental Characterization of Shock Wave Expansion in Innovative Nanosecond Laser Ablation Process Enabling Repair and Recycling Dominic Heunoske, Martin Lueck, Jens Osterholz <i>Fraunhofer EMI</i> In the Rapid-KI project a new process is developed to control laser ablation for repairing or recycling electronic components that are protected by a coating. Therefore experimental data obtained from nanosecond single pulse experiemnts was used to calibrate a simulation model of laser ablation. The expansion of the shock wave was determined using a schlieren imaging system and the Sedov-Taylor theory.		High-throughput nanoscale ptychographic tomography achieved with rapid scanning microscopy instrument at HXN beamline Zirui Gao, Weihe Xu, Wei Xu, Hanfei Yan, Dmitri Gavrilov, Huijuan Xu, Aaron Michelson, Yong Chu, Evgeny Nazaretski, Xiaojing Huang <i>Brookhaven National Laboratory</i> The RASMI-II instrument at NSLS-II enables high-throughput ptychographic tomography imaging. It utilizes rapid flyscanning and 3D position tracking to achieve sub-20 nm resolution in less than 1 hour, as demonstrated on microelectronics samples.		

----- Coffee Break 10:15-10:30 ----- Coffee Break 10:15-10:45 -----

----- Coffee Break 10:30-10:55 -----

[SLPCp] 10:30-12:00 SLPC Poster Session <Exhibition Hall A>

[TILA-LIC6]10:45-12:00Laser Materials & SystemsChair: Mariastefania De Vido

Science and Technology Facilities Council, Swindon, UK

TILA-LIC6-01 10:45 Invited Materials for Waveguide Lasers in the Visible

Xavier Mateos¹, Pavel Loiko², Mailyn Ceballos¹, Amandine Baillart², Gurvan Brasse², Rosa Maria Solé¹, Alain Braud², Weidong Chen³, Magdalena Aguiló¹, Carolina Romero⁴, Víctor Arroyo⁴, Javier Rodriguez Vázquez de Aldana4, Victor Llamas⁵, Josep Maria Serres⁵, Patrice Camy², Francesc Día¹, Valentin Petrov⁶ ¹Universitat Rovira i Virgili, ²Université de Caen Normandie, Caen, France, ³Fujian Institute of Research on the Structure of Matter, Fuzhou, China, ⁴University of Salamanca, Salamanca, Spain, ⁵Eurecat, Centre Tecnològic de Catalunya, ⁶Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy We overview the recent progress in rare-earth-doped fluoride and oxide materials for visible waveguide lasers. Liquid Phase Epitaxy growth and spectroscopy of Eu:KY(WO4)2 and Tb,Gd:LiYF4 epitaxial layers for planar waveguides are presented. Ultrafast Laser Inscription of depressedcladding channel waveguides in Pr:LiYF4 and their laser operation in the orange are described

[XOPT7] 10:55-11:55 Imaging2 Chair: Jumpei Yamada *Osaka University*

X0PT7-01 10:55 Multibeam ptychography: nanoimaging at macro scale

keV of irradiating beam energy.

Mikhail Lyubomirskiy¹, Tang Li¹, Maik Kahnt², Ken Vidar Falch¹, Roman Zvagelsky³, Thomas L Sheppard³, Martin Wegener³, Pablo Villanueva Perez⁴ *¹DESY*, ²MAX IV, ³KIT, ⁴Lund University X-ray multibeam ptychography speeds up measurements of extended samples utilizing so far wasted photons. Until now, the major challenge was performing it with higher energies of the incident beam and with many beams (>3). This work shows the practical implementation of multibeam ptychography with 12 beams and up to 20

Poster session program p.148-

	Oral, Thursday,		
ALPS <room 303=""></room>	ALPS <room 511+512=""></room>	BFSS	BISC <room 419=""></room>
ALPSp2]		[BFSSp]	
			BISC6-02 11:15 Definition Affection phase microscopy for Definition Stangard Presson Wing word holds Presson Partition Presson Partition Presson Presson Presson Presson
Poster session p	rogram p.145-	Poster session program p.148	
			BISC6-03 11:45 Refractive index measurement of myelinated co-cultured DRG neurons with surface plasmon microscopy Ipsita Chakraborty ¹ , Akinari Abe ² , Yuki Miwahara ² , Kenta Shimba ³ , Hiroshi Kan Yasuhiko Jimbo ³ , Andreas Offenhäusser ¹ ¹ Forschungszentrum Jülich GmBH, ² Muroran Institute of Technology, ³ University of Tokyo In this work, we study the refractive-index profile of co-cultured myelinated dorsal rog anglion neurons from mebryonic rats in-vitro with the developed surface plasmo microscope. This provides a platform to quantize the neuronal characteristics in a label-free manner.
Lunch 12:00-13:15	Lunch 12:00-13:30		BISC6-04 12:00 Generative Adversarial Network- Generated Refractive Structures for Light Propagation Simulations in Inhomogeneous Turbid Media Jirawit Hamm Jiracheewee, Takahiro Nishimura Osaka University This study proposes a method using generative adversarial network to generate refractive index inhomogeneities by persistent homology analysis and simulate light propagation on microscopic scale by

----- Lunch 12:15-13:30 -----

LEDIA <Room 211+212>

Oral, Thursday, 25 April AM

HEDS <Room 311+312>

HEDS8-03 11:05

The ALFA beamline: a new source of laser-driven high energy electrons at kHz repetition rate Carlo Maria Lazzarini1,

Gabriele Maria Grittani¹, Petr Valenta¹, Illia Zymak¹, Roman Antipenkov¹, Uddhab Chaulagain¹, Leonardo Vila Nova Goncalves1 Annika Grenfell¹, Marcel Lamac^{1,3}, Sebastian Lorenz^{1,2}, Michal Nevrkla^{1,2}, Alexandr Spacek^{1,2}, Vaclav Sobr¹, Wojciech Szuba¹, Pavel Bakule¹, Georg Korn¹, Sergei Vladimirovich Bulanov^{1,4} ¹ELI Beamlines Facility, The Extreme Light Infrastructure ERIC, Za Radnicí 835, 25241 Dolní Brežany, Czech Republic, ²Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Brehová 7, 11519 Prague, Czech Republic, ³Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 12116 Prague, Czech Republic, ⁴Kansai Photon Science Institute, National Institutes for Quantum Science and Technology, 8-1-7 Umemidai, Kizuqawa, Kyoto 619-0215, Japan

The new LWFA ALFA beamline will be introduced, based on the ELI Beamlines's in-house developed multi-cycle (15 fs) 1 kHz OPCPA power-scalable laser system. Recent results show the acceleration of collimated (few mrad divergence), quasi-monoenergetic electron beams with record breaking peak energy in the tens of MeV at 1 kHz repetition rate. These last could enable innovative medical applications.

HEDS8-04 11:20

Density dependence of positron acceleration by longitudinal electric field in relativistic laser-plasma interaction

Kaoru Sugimoto

Yuakawa Institute for Theoretical Physics, Kyoto University

We performed 2D PIC simulation of interaction between an ultra-intense laser light and a near critical density plasma. It has been observed that $e^{-}e^{+}$ pair creation happened due to photon collisions. Some of the positrons are accelerated by a longitudinal electric field induced by a charge separation at the laser pulse front. The positrons are energized to near GeV level. We also confirmed that positron acceleration can be caused by initial target density 0.5-5.6nc.

HEDS8-05 11:35

Anisotropic backscattering induced by focused single ultra-high intensity laser beam in quantum vacuum

Takumi Hara¹, Ryosuke Kodama^{1,} ¹Graduate School of Engineering, Osaka University, ²Institute of Laser Engineering, Osaka University

We will present the analysis results of anisotropic backscattering via four-wave mixing process induced by focusing a single ultra-intense laser beam at a large angular aperture in the quantum vacuum

----- Lunch 11:50-13:15 -----

[IP6] 11:00-12:00 **Computational Imaging 2** Chair: Koichi Nitta Kobe University

IP <Room 414+415>

IP6-01 11:00

Exploring the Potential of Light Detection and Ranging for Society 5.0 Chao Zhang^{1,2}, Atsushi Nakamura³

¹Shimane University, ²The University of Tokyo, ³NTT Corporation Infrastructure inspections using LiDAR has

attracted attentions recently. We present FMCW and ToF LiDAR to achieve long and high-precision ranging, which are expected to be introduced in infrastructure inspection to enhance the inspection frequency.

Simulation of a compressive sensing-

based two-frequency time of flight

University of Engineering and Technology,

Vietnam National University Hanoi, ²Center

for Optical Research and Education (CORE),

Utsunomiya University, 3School of mechanical

engineering, Hanoi university of science and

A light detection and ranging (Lidar) system

based on time of flight (ToF) measurement

technique was introduced. Employing the

two-frequency method the Lidar system can

be extended the measurement range while

Assessing U-Net and Attention-UW Net

¹Department of Electrical Engineering, National

Science and Technology, 3 Institution of Medical

Device and Imaging, National Taiwan University, YougLin Institute of Health, National Taiwan

University, 5Program for Precision Health and Intelligent Medicine, National Taiwan University

Image segmentation in MRI is essential for diagnosis. Our study applied Attention-UW

Net for brain lesion segmentation in MRI, showing its superiority over U-Net. Attention-UW Net achieved better performance (IoU: 0.80 vs. 0.75, precision: 0.86 vs. 0.85, recall: 0.83 vs. 0.70, F1 score: 0.80 vs. 0.81).

Yunlin University of Science and Technology,

²Graduate School of Engineering Science and Technology, National Yunlin University of

in the Segmentation of Brain Tumor

Images from Magnetic Resonance

Clara Lavita Angelina^{1,2}, Sunil Vyas³,

Hsuan Ting Chang^{1,2}, Yuan Luo^{3,4,5},

maintaining the accuracy of an existing

system that utilizes a single-frequency

technique and compressive sensing

Tuan Duc Pham³, Yoshio Havasaki².

IP6-02 11:30

Lidar system

Quang Duc Pham¹

technoloav

carrier

IP6-03 11:45

Imaging

Fu Ren Xiao³

LDC <Room 301>

Tokushima University

Invited LDC9-01 11:00

Quantum photon sourse for laser sensing and imaging

Sunao Kurimura¹, Ryo Okamoto², Shigeki Takeuchi² ¹NIMS, ²Kyoto University Quantum photon source is demonstrated by

specially designed quasi-phase matching device. Fabrication technologies such as electron-beam lithography and superresolution patterning were applied. Broad spectrum from chirped periodic structure improved depth resolution in twophotoninterference sensing.

[LDC10] 11:30-11:36 Poster Short Presentation

Chair: Eiii Hase Tokushima University

Please see the session of LDCp (p.152).

LDC10-01 11:30

Grating-based AR display system with three-layer volume holographic liahtauide

LDC10-02 11:33

Investigation of human skin mechanics by using multimodal SHG, **TPEF, and Brillouin scattering** microscopy

----- Lunch 11:36-13:30 -----

LEDIA5-02 11:10

Invited

Invited Demonstration of stacked InGaN full

color monolithic micro LED display Koichi Goshonoo, Koji Okuno, Masaki Ohya Toyoda Gosei

By applying a technology of monolithic LED structure with RGB area within a single device, a full-color monolithic micro-LED display was fabricated and demonstrated

----- Lunch 11:40-13:15 -----

----- Lunch 12:00-13:30 -----

LSC <room 421=""></room>	LSSE <room 316=""></room>	OMC <room 418=""></room>	OWPT <room 304=""></room>
	[LSSE9] 11:00-12:00 Remote Sensing Chair: Takashi Fujii The University of Tokyo	OMC10-02 11:00	[OWPT6] 11:00-12:00 Session 6 Chair: Motoharu Matsuura Univ. Electro-Communications
SC4-03 11:15 JItrafast dynamics on A-Ti₃O₅ thin ilms excited by ultrashort pulse laser R. Takahashi ¹ , S. Nakata ¹ , K. Yoshimatsu ² , 4. Kumigashira ² , H. Wadati ^{1,3} Department of Materials Science, Graduate School of Science, University of Hyogo, Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Institute of Laser Engineering, Osaka Jniversity n my talk, I will discuss the dynamical esponse of optical properties in λ -Ti ₃ O ₅ to ultrashort laser pulse excitation, in sonjunction with static optical properties.	A study of the upper Mesosphere and lower Thermosphere with EISCAT_3D radar and sodium LIDAR Satonori Nozawa ¹ , Norihito Saito ² , Yasunobu Ogawa ³ , Takuya D. Kawahara ⁴ , Taishi Hashimoto ³ , Takuya D. Kawahara ⁴ , Hiroshi Miyaoka ³ , Tetsuya Kawabata ¹ , Magnar G. Johnsen ⁶ , Axel Steuwer ⁷ ¹ Institute for Space-Earth Environmental Research, Nagoya University, "RIKEN Center for Advanced Photonics, RIKEN, ³ National Institute of Polar Research, "Shinshu University, ⁵ The University of Electro-Communications, ⁶ Tromse Geophysical Observatory, UiT The Arctic University of Norway, ⁷ EISCAT Scientific Association We will present the current status of EISCAT_3D radar and a sodium LIDAR at Tromsoe, and future plans. The EISCAT_3D is a new powerful IS radar for the ionosphere (70-1000 km). The sodium lidar at Tromsoe will also play an additional important role by providing neutral temperature and wind velocities between 80 and 110 km.	Plasmonic nanogap optical vortex excitation via spin-to-orbital angular momentum conversion Christophe Pin, Keiji Sasaki Hokkaido University, RIES In this study, we design a hexamer nanoantenna composed of gold nanorods with a periodic tilt and numerically analyze the excitation efficiency of the nanogap quadrupole mode under circularly polarized plane wave irradiation. OMC10-03 11:15 Comparison of laser-processed terahertz metalenses with numerical simulation of measured focusing characteristics Yuki Hakamada, Mizuho Matoba, Haruyuki Sakurai, Kuniaki Konishi The University of Tokyo In this presentation, we report the numerical simulation of focusing characteristics of terahertz metalenses fabricated by femtosecond laser processing and compare it with the experimental results. We find that they are in good agreement.	Optical Wireless Power Transmission for Moving Object using Image Recognition Takeo Maruyama <i>Kanazawa University</i> We focus on the construction of an automatic beam-tracking system for optical wireless power transmission to moving objects. The system is based on a combination of position recognition using a CMOS camera and high-speed beam steering using a Galvano mirror. The system was successfully used in the optical wireless power transmission for a miniature car.

LSC4-04 11:30

Two-wavelength excitation nearinfrared imaging with upconversion in Er3+

Yugo Akabe Osaka University

In recent years, demand for imaging cameras in the near-infrared region has increased with the spread of self-driving cars and drones. On the other hand, existing near-infrared imaging cameras are complicated and expensive. In this study, we developed a simpler near-infrared imaging system using up-conversion in Er3+.

----- Lunch 11:45-13:15 -----

LSSE9-02 11:30

Remote sensing of the Earth's atmosphere utilizing limb-sounding by the Japanese geostationary satellites Takuo T. Tsuda

University of Electro-Communications In this talk, we will introduce the limbsounding of the Earth's atmosphere by the Japanese Geostationary satellites, Himawari-8/9, which provide new applications such as polar mesospheric cloud observations and temperature retrievals with near-global coverage.

Invited OMC10-04 11:30

Room Temperature Exciton Polariton Interactions in Van der Waals Superlattices

Jiaxin ZHAO

Nanyang Technological University Monolayer group-VI transition-metal dichalcogenides (TMDs), a new class of two-dimensional semiconductors, have attracted significant research interest due to their sizable direct bandgap and exceptional optical and electronic properties. In this work, we successfully demonstrate the realization of nonlinear optical parametric polaritons in a WS₂ monolayer microcavity [1].

OMC10-05 11:45

Wide-area light-induced selective detection of nano-biomaterials with nano-bowl plasmonic substrate Masatoshi Kandda^{1,2,3}, Kota Hayashi^{1,2,3},

Yumiko Takagi^{2,1}, Shuich Toyouchi^{1,2}, Mamoru Tamura^{2,4}, Shiho Tokonami^{2,3}, Takuya lida^{1,2}

¹Graduate School of Science, Osaka Matropolitan University, 2 Research Institute for Light-induced Acceleration System (RILACS), ³Graduate School of Engineering, Osaka Metropolitan University, ⁴Graduate School of Engineering Science, Osaka University Optical condensation enables rapid and dense assembling and detecting small objects by laser-induced convection. A nano-bowl substrate was developed for highly-efficient optical condensation with a low-power laser with mW-level. In this work, we investigate the operation area optical condensation with a nano-bowl substrate by adjusting the laser power to enhance the difference in assembling dispersion with and without microbubbles.

----- Lunch 12:00-13:30 -----

OWPT6-02 11:30

Integrative Dynamic Safety System for OWPT: Real-Time Velocity and Distance-Based Safety Control

CHEN ZUO, Tomoyuki Miyamoto Tokyo Institute of Technology

An enhanced Optical Wireless Power Transmission (OWPT) safety framework has been developed that includes both fixed and dynamic velocity-responsive safety distances. This hybrid model dynamically adjusts the safety distance based on object velocity and system latency, addressing the shortcomings of previous methods. Experiments with objects crossing the OWPT field at variable velocities demonstrated the robustness of the system for over 300 trials.

OWPT6-03 11:45

LED Based Automatous Optical Wireless Power Transmission for Large Size Beam 2D Aiming

Mingzhi Zhao, Tomoyuki Miyamoto Tokyo Institute of Technology In this research, an LED-based OWPT system is proposed with autonomous tracking and beam aiming, which is especially designed fo large size beam spot systems. The integration of deep learning, dual-axis mirror control, and optical system design achieves this auto-OWPT system as a significant improvement. In addition, the power transmission performance is evaluated and analyzed in the simulation and experiment.

	Oral, Thursday		
SLPC <room 416+417=""></room>	TILA-LIC <room 315=""></room>	XOPT <room 313+314=""></room>	
SLPCp]			
	TILA-LIC6-02 11:15 Room temperature direct bonding of Yb,Er:phosphate glass and Co:spinel crystal Jianbin Zhao, Xinchang Wu, Yitong Chen, Min Wu, Jinhong Wang, Jiawei Li, Lihe Zheng Yunnan University The heterogeneous direct bonding between Yb,Er:phosphate glass and Co:spinel crystal	XOPT7-02 11:10 Real-life challenges of single-beam ptychography vs. multi-beam ptychography Tang Li ¹ , Maik Kahnt ² , Thomas L. Sheppard ^{3,6} , Qunqing Yang ⁴ , Ken Vidar Falch ¹ , Roman Zvagelsky ⁵ , Pablo Villanueva-Perez ⁴ , Martin Wegener ⁵ , Mikhail Lyubomirskiy ¹ 'Centre for X-ray and Nano Science CXNS, DESY, ² MAX IV Laboratory, Lund university, ³ Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, ⁴ Division of Synchrotron Radiation Research and NanoLund, Department of Physics, Lund Uni, ³ Institute for Applied Physics, Karlsruhe Institute of Technology, ⁶ Institute of Chemical Technology, Leipzig University Multi-beam ptychography (MBP) enables	
Poster session program p.148-	TILA-LIC6-03 11:30 Invited TILA-LIC6-1 11:30 Invited	X-ray ptychography on larger samples without sacrificing resolution. This paper discusses MBP's challenges, including speed trade-offs, reconstruction quality compared to single- beam ptychography, the effects of detector dynamic range on probe numbers, and the impacts of vibrations and coherence. We base our findings on recent MBP experiments to identify key performance factors. XOPT7-03 11:25 Development of Single-Frame Spectro-microscopy Using Non- monochromatized Soft X-ray Beam Kyota Yoshinaga ¹ , Yoko Takeo ^{1,2,3} , Takenori Shimamura ^{1,2,3} , Satoru Egava ¹ ,	
	Anna Suzuki, Sergei Tomilov, Weichao Yao, Yicheng Wang, Martin Hoffmann, Clara Jody Saraceno <i>Ruhr University Bochum, Germany</i> We present our achievements in the development of high-power ultrafast laser sources in the 2.1-µm wavelength range. We explored the potential of Ho-based lasers toward high-energy, high-average power, and broadband laser emission in different geometries.	Kai Sakurai ^{1,2} , Jordan Tyler O'Nea ^T , Yu Nakata ¹ , Hikaru Kishimoto ² , Yasunori Senba ^{2,3} , Haruhiko Ohashi ^{2,3} , Takashi Kimura ^{1,3} ¹ The University of Tokyo, ² JASRI, ³ RIKEN We constructed the single-frame spectro- microscopic system at the soft X-ray beamline BL07LSU of SPring-8. Using the system, we successfully measured a hyperspectral image of a test sample with a single frame exposure. X0PT7-04 11:40	
		Single-shot high-resolution in-line holography with XFEL Gota Yamaguchi ¹ , Jumpei Yamada ² , Atsuki Ito ² , Kota Shioi ² , Taito Osaka ¹ , Ichiro Inoue ¹ , Yuichi Inubushi ^{1,3} , Takashi Kameshima ^{1,3} , Kazuto Yamauchi ² , Makina Yabashi ^{1,3} ¹ <i>RIKEN SPring-8 Center,</i> ² <i>Osaka University,</i> ³ <i>JASRI</i> We are developing single-shot full-field phase-contrast imaging by combining the XFEL sub-10nm focusing system with in-line holography. The reconstructed image of Ag	
		Lunch 11:55-13:30	

----- Lunch 12:00-13:30 -----

	- ··· , · · · · · · · · · · · · · · · ·	, 25 April PM	
ALPS <room 303=""></room>	ALPS <room 511+512=""></room>	BISC <room 419=""></room>	HEDS <room 311+312=""></room>
[ALPS21] 13:15-14:45 Optical frequency combs / Frequency stabilized lasers and applications (4) Chair: Akifumi Asahara			[HEDS9] 13:15-15:15 Collisionless Shock & Accretion Disk Chair: Ryo Yamazaki Aoyama Gakuin University
University of Electro-Communications			
LPS21-01 13:15 Invited It's the perfect timing for optical requency combs ungwon Kim AIST			HEDS9-01 13:15 Invite Cosmic-Ray Activities in the Coronae of Active Supermassive Black Holes Yoshiyuki Inoue Osaka University
I will present on the latest progress in the ultralow-noise frequency combs and their applications with an emphasis on precision timing, synchronization, and microwave/ mm-wave photonics.	[ALPS25] 13:30-15:00 Quantum optics and their applications (2) Chair: Rikizo Ikuta <i>Osaka Univ.</i>	[BISCp] 13:30-15:00 BISC Poster Session <exhibition a="" hall=""></exhibition>	Active supermassive black holes host X-ray bright, hot plasma, known as coronae. In th talk, I will discuss our current understanding of non-thermal coronal activities from both theoretical and observational points of view
	radio-frequency electric field measurement Bao-Sen Shi, Dong-Sheng Ding, Zong-Kai Liu, Li-Hua Zhang, Bang Liu University of Science and Technology of China In this talk, I will mainly report the new results of Rydberg atomic-based radio- frequency electric field sensing achieved in our group.		
LPS21-02 13:45 roadband Beam Steering by Optical requency Comb-Based Optical hased Array akashi Kato ^{1,2} , Kaoru Minoshima ¹ The University of Electro-Communications, PRESTO, JST			HEDS9-02 13:40 Invite Electron acceleration at oblique supernova remnant shocks Artem Bohdan Max Planck Institute for Plasma Physics SNRs are known as efficient particle accelerators due strong non-thermal radiation emitted by self-produced relativistic electrons, protons and ions. We use particle-in-cell simulations to study microphysics of electron acceleration in oblique high Mach number shocks. In this case, fast electrons can escape to the shocl upstream, modifying the shock foot to a region called the electron foreshock and strongly affecting electron acceleration efficiency.
the proposed method employs a broadband ptical phased array with a phase-controlled ptical frequency comb for scanning optical ots. Precise control of the comb's frequency arameters eliminates the need for optical etup calibration.		Poster session program p.149-	childing.

ALPS21-03 14:00

Improvement of Suppression Ratio in Broadband Background Noise Canceling Method using Phasecontrolled Optical Frequency Comb Keito Hino, Takashi Kato, Yasuhisa Nekoshima,

Kaoru Minoshima The University of Electro-Communications We used a phase-controlled optical frequency comb to remove broadband pulses in the optical domain. This method achieved a suppression ratio of 26.3 dB by tailoring the difference in dispersion in the optical setup.

ALPS25-02 14:00

Twin-field-like-continuous-variable quantum key distribution with highly non-Gaussian state Makoto Ishihara, Wojciech Roga,

Masahiro Takeoka *Keio University* We propose a continuous-variable quantum key distribution protocol of which a key rate overcomes the repeaterless bound. We calculate its key rate by numerical optimization with new constraints which can estimate our highly non-Gaussian state. HEDS9-03 14:05

Magnetorotational Instability in electron-ion plasma: Shearing-box simulations

Invited

Evgeny A Gorbunov¹, Fabio Bacchini^{1,2} ¹KU Leuven, ²Royal Belgian Institute for Space Aeronomy, Solar-Terrestrial Centre of Excellence

With a novel shearing-box method, we study collisionless MRI turbulence in electron-ion plasmas in accretion disks. Our goal is to construct a first-principles electron-ion heating ratio prescription for accurate modeling of accretion flows.

102

	Oral, Thursda	y, 25 April PM	
IP <room 414+415=""></room>	LDC <room 301=""></room>	LEDIA <room 211+212=""></room>	LSC <room 421=""></room>
		[LEDIA6] 13:15-14:45 Growth Chair: Y. Honda Nagoya University	[LSC5] 13:15-15:05 Photoemission, absorption, scattering (3) Chair: Goro Shibata Japan Atomic Energy Agency
		LEDIA6-01 13:15	LSC5-01 13:15 Invited
[IPp] 13:30-15:00	[LDCp] 13:30-15:00	Epitaxial Growth of Transition Metal Nitrides on Nitride Semiconductors Atsushi Kobayashi ¹ , Takuya Maeda ² , Yoshio Honda ³ ¹ Tokyo University of Science, ² The University of Tokyo, ³ Nagoya University	Visualization of optical polarization transfer to photoelectron spin vector emitted from a spin-orbit coupled surface state Kenta Kuroda ^{1,2} ' <i>Hiroshima University,</i> ² <i>WPI-SKCM2</i>
IP Poster Session <exhibition a="" hall=""></exhibition>	LDC Poster Session <exhibition a="" hall=""></exhibition>	We investigate the crystal structure variations and fundamental electrical and optical properties of NbN and ScAIN epitaxially grown on nitride semiconductors. LEDIA6-02 13:30 Fabrication of high-quality Al-polar and N-polar AIN templates through self-forming tiny-pits layer Narihito Okada ¹ , Aina Hiyama Zazuli ¹ , Daisuke Inahara ¹ . Taketo Kowak ¹ .	Like light polarization that is selected by a superposition of the optical basis, the electron spin direction can be controlled through a superposition of the spin basis. By spin- and angle-resolved photoemission spectroscopy with a laser, we demonstrate that such optical information can be projected to the 3D spin vector of the photoelectrons from $B_{i2}Se_{3}$ surface, permitting us to optically control the pure spin state pointing to an arbitrary direction.
		Minagi Miyamoto ¹ , Kai Fujii ¹ , Ryosuke Ninoki ¹ , Sora Nagata ¹ , Taisei Kimoto ¹ , Satoshi Kurai ¹ , Yoshihiro Sugawara ² , Daisaku Yokoe ² , Yongzhao Yao ² , Yukari Ishikawa ² , Yoichi Yamada ¹ <i>Yamaguchi University, ²Japan Fine Ceramics</i> <i>Center</i>	LSC5-02 13:35 Invited O K-edge RIXS study of Os Electronic Structures in 5d ² Double Perovskite Ba ₂ CaOsO ₆ Jun Okamoto ¹ , Goro Shibata ² ,
		A fabrication technique for high-quality AIN templates with a tiny-pit AIN layer is proposed. The dislocation density and radius of curvature of the AIN layer were improved. The N-polar AIN layer was grown using AI-polar tiny-pit AIN layers through polarity inversion. As a result, the AI-polar tiny-pit AIN was very effective in improving the crystalline quality of the N-polar AIN layer.	Hiroaki Hayashi ^{3,4} , Hsiao-Yu Huang ¹ , Amol Singh ¹ , Arata Tanaka ⁵ , Kazunari Yamaura ^{3,4} , Yu S. Posonov ⁶ , Sergey V. Stetlsov ^{6,7} , Chien-Te Chen ¹ , Atsushi Fujimori ^{1,8,9} , Di-Jing Huang ^{1,10,11} ¹ National Synchrotron Radiation Research Center, Taiwan, ² Materials Science Research Center, Japan Atomic Energy Agency, ³ Research Center for Materials Nanoarchitectonics, National Institute for Materials Science,
Poster session program p.151-	Poster session program p.152	LEDIA6-03 13:45 Metal catalyst effect on β-Ga ₂ O ₃ growth using trihalide vapor phase growth Kosuke Taguchi ¹ , Kentaro Ema ² , Kohei Sasaki ² , Hisashi Murakami ¹ ¹ Tokyo University of Agriculture and Technology, ² Novel Crystal Technology, Inc The effect of adding metallic indium (In) impurities during Ga ₂ O ₃ homoepitaxial growth by THVPE method on the growth rate and crystallinity was investigated. Under the condition without In addition, the growth rate increased with increasing In addition, and a growth rate of over 8 μm/h was obtained when the mass ratio of In to Ga of 0.10.	⁴ Graduate School of Chemical Science and Engineering, Hokkaido University, ⁶ Department of Quantum Matter, Hiroshima University, ⁶ Institute of Metal Physics, Russia, ⁷ Department of Theoretical Physics and Applied Mathematics, Ural Federal University, ⁸ Department of Physics and Center for Quantum Technology, National Tsing Hua University, of Department of Physics, The University of Tokyo, ¹⁰ Department of Physics, National Tsing Hua University, ¹¹ Department of Physics, National Yang Ming Chao Tung University We investigated the Os 5d electronic structures of 5d ² double-perovskite Ba ₂ CaOsO ₆ that are proposed to exhibit magnetic octupole order using the O K-edge resonant inelastic X-ray scattering through the strong hybridization between the O 2p
			and 0s <i>5d</i> orbitals. LSC5-03 13:55 Invited
		LEDIA6-04 14:00 Origin of reverse leakage current in vertical pn junction diode on OVPE-GaN substrate S. Usami ¹ , J. Takino ² , M. Imanishi ¹ , T. Sumi ² , H. Watanabe ³ , S. Nitta ³ , Y. Honda ³ , Y. Okayama ² , H. Amano ³ , Y. Mori ¹ 'Grad. School of Eng., Osaka University, ² Panasonic Holdings Corporation, ³ IMass, Nagoya University We investigated the cause of reverse leakage current in a vertical pn junction diode on an OVPE-GaN substrate. The results revealed that the leakage current was caused by some threading dislocations propagated form the OVPE-GaN substrate.	Terahertz components fabricated by femtosecond laser processing Xi Yu', Dejun Liu', Verdad Canila Agulto ³ , Kensuke Miyajima ¹ , Makoto Nakajima ³ , Fumihiro Itoigawa ⁴ , Shingo Ono ⁴ ¹ Tokyo University of Science, ² Shanghai Normal University, ³ Osaka University, ⁴ Nagoya Institute of Technology Femtosecond (fs) laser processing is being widely utilized for the research of micro and nano machining. Using fs laser processing, we realized a quarter-wavelength plate for Terahertz(THz) waves on a Zinc Oxide substrate. High- <i>Q</i> factor and polarization- independent quasi-bound states in the continuum were also achieved in the THz all-metal devices by this method. These fs laser-fabricated THz components were evaluated by both experiments and simulations.

Oral, Thursday, 25 April PM					
LSSE <room 316=""></room>	OMC <room 418=""></room>	OWPT <room 304=""></room>	SLPC <room 416+417=""></room>		
LUCL CHOON OTCOM [LSSE10] 13:20-15:00 Space Technology 3 Chair: Tadanori Fukushima Orbital Lasers SSE10-01 13:20 Invited Cost and Benefit Analysis of Orbital Debris Remediation Nomas J Colvin, Jericho W Locke WASA Office of Technology, Policy, and Strategy This report presents a cost-benefit analysis of various approaches to debris remediation, which refers to any action taken to reduce he risks posed by orbital debris by moving, emoving, or reusing it. A thorough understanding of the near-term costs and penefits of different remediation approaches an inform decision-making regarding R&D investment and policy creation in this field. SSE10-02 13:50 Invited Chace Propulsion by Laser / Light Mater on ight ablation for Space Debris Cleaning has been pursued experimentally. We designs of the space propulsion by aser or light ablation for Space Debris Cleaning has been pursued experimentally. We are now measuring the ablative vopulsion force with extremely weak power lensity using an electrostatic levitation umace, which is useful to simulate the hermally and mechanically isolated state of he real space debris in space. Moreover, we evently try to measure the impulsive force tue to the ablation by extremely-ultraviolet ight.	[OMCp] 13:30-15:00 OMC Poster Session <exhibition a="" hall=""></exhibition>	CONTINUISON SOLA Session 7 Chair: Gen-ichi Hatakoshi Waseda Univ. OWPT7-01 13:30 Invited C-band Multi-Junction Photonic Power Converters: Al Techniques for Optimized Designs and Role of Invinescent Coupling Krin Hinzer ¹ , Robert F. H. Hunter ¹ , D. Paige Wilson ¹ , Gavin P. Forcade ¹ , Meghan N. Beattie ¹ , Christopher E. Valdivia ¹ , Oliver Höhn ² , Louis-Philipe St-Amaud ¹ , David Lackner ² , Vuri Grinberg ⁴ , Mathieu de Lafontaine ¹ , Carmine Pellegrino ² , Jacob J. Krich ¹ , Alexandre W. Walker ³ , Henning Helmers ² ¹ University of Ottawa, ² Fraunhofer Institute for Solar Energy Systems ISE, ³ Advanced Floctronics and Photonics Research Centre, National Research Council of Canada, ⁴ Digital Technologies Research Centre, National Research Council of Canada Photovoltaic devices containing InGaAs absorbers, lattice matched to InP, have shown excellent performance in many applications. We have developed a machine framework to explore design space for optoelectronic devices. We present results on 1-junction to 10-junction devices. Luminescent coupling effects increase when devices have a back reflector.	SLPC10] 13:15-14:30 Welding 1 Chairs: Yuji Sato Osaka University Jörg Volpp Luleä University of Technology SLPC10-01 SLPC10-01 13:15 Invita Spatter reduction by laser welding with multi-spot optics Alexander Laskin', Joerg Volpp ² , Takuji Nara ³ Adloptica Optical Systems GmbH, ² Lulea University of Technology. Diniversity of Technology. "Profitet Spatter and porosity by laser welding of Cu and Al parts are reduced through splitting laser beam energy in 2x2 or 3x3 spot patterns using multi-spot optics providing optimal temperature profiles in melt pool. SLPC10-02 13:45 The influence of the capillary shape of process emissions Michael Haas ¹² , Felix Zaiß ¹ , Johannes Wahl ¹ , Marc Humme ¹ , Alexander Olowinsky ³ , Felix Beckmann ⁴ , Julian Moosmann ⁴ , Christian Hagenlocher ¹ , Andreas Michalowski ¹ Institut für Strahlwerkzeuge (FSW), University of Stuttgart, Paffenwaldring 43, 70569 Stuttgart, Germany, ⁴ Graduate School of Excellence advanced Manufacturing Engineering, University of Stuttgart, Germany, ⁴ Frauholet, 12, 70569 Stuttgart, Germany, ⁴ Institute of Materials Physics, Helmholtz-Zentrum Hereon Max-Planck-Str. 1, 2, 1502 Geesthacht, Germany Partial-penetration laser welding is investigated using X-ray imaging to analyze the influence of the geometry of the vapor capillary on measured process emissions. The results are a basis to improve process monitoring during welding.		
	Poster session program p.152-	OWPT7-02 14:00 High Efficiency (> 40%) InGaAsP Photovoltaic Device for 1.06-µm-range Laser Power Transmission Wag Motomura', Takaya Oshimo', Masahiro Koga', Kosuke Watanebe', Shiro Uchida', Kouichi Akahane', Yukiko Suzuki', Natsuha Ochiai', Kazuto Kashiwakura', Youhei Toriumi', Kensuke Nishioka', Masakazu Arai' ' University of Miyazaki, ² Chiba Institute of Technology, ³ National Institute of Information and Communications Technology, ⁴ NTT Space Environment and Energy Laboratories We fabricated InGaAsP photovoltaic devices for 1.064-nm optical wireless power transmission grown by metalorganic vaper phase epitaxy. We investigated the effect of antireflection coating, the difference of electrode shape and incident laser power dependence of current-voltage characteristics, experimentally. The power maximum power conversion efficiency exceeded 40%.	SLPC10-03 14:00 Elucidation of Sp a tter Generation Mechanism in Medium Vacuum Laser Welding Kai Tomita', Koichi Taniguchi', Keiji Ueda', Yuji Sato ² , Masahiro Tsukamoto ² 'JFE Steel Corporation, ² JWRI, Osaka Univ. Laser welding under an atmospheric pressure of 1200 Pa or more clarified that the molten pool repeatedly expanded and shrunk due to unstable heat input, leading the generation of spatter.		
LSSE10-03 14:20 Micro-integrated diode laser module for a spaceborne optical frequency reference – design and mechanical evaluation Dian Zou, Martin Gärtner, Nora Goossen-Schmidt, Stephanie Gerken, Janpeter Hirsch, Simon Kubitza, Norbert Müller, Max Schiemangk, Christoph Tyborski, Andreas Wicht Ferdinand-Braun-Institut (FBH), Leibniz-Institut		OWPT7-03 14:15 Photoelectric conversion characteristics of CIGS solar cells under 1064nm laser light irradiation Moeka Chiba ¹ , Shunsuke Shibui ¹ , Shuntaro Fuji ¹ , Hironori Komaki ² , Hiroaki Nakamura ² , Hiroshi Tomita ² , Takato Ishiuchi ² , Shiro Uchida ¹ ¹ Chiba Institute of Technology, ² Idemitsu Kosan The temperature characteristics of CIGS solar cells	SLPC10-04 14:15 Application of MDL/E System in Tailore Laser Welding of Automobile Door Ring Qin Qin Tao, Zhixiang Chen SERVO-ROBOT (Shanghai) Trading Co., Ltd. Considering new challenges in body-in-white design, one-piece hot stamping door ring technology is being applied by more and more car manufacturers. As a key part of this, tailor laser welding technology has a direct effect or		

Ferdinand-Braun-Institut (FBH), Leibniz-Institut fuer Hoechstfrequenztechnik We present the design of a miniaturized laser

module for a spaceborne optical clock. Furthermore, results of its mechanical evaluation are shown, demonstrating the module's ability to withstand the mechanical loads of the rocket launch.

Oral Program

safety. Servo-Robot's modular laser welding tracking and quality control and monitoring system provides a reliable vision solution.

under 1064nm laser irradiation were investigated. As a result, it was found that high photoelectric conversion efficiency was maintained even at a high temperature of 60 deg-C.

Oral, Thursday, 25 April PM

TILA-LIC <Room 315>

[TILA-LICp] 13:30-15:00 POSTER Session & ATLA Project - 2 <Exhibition Hall A> [XOPT8] 13:30-14:15 XFEL2

Chair: Hiroto Motoyama The University of Tokyo

XOPT8-01 13:30 Invited MHz X-ray Multi-Projection Imaging

XOPT <Room 313+314>

Patrik Vagovic¹, Pablo Villanueva Perez² Valerio Bellucci3, Wataru Yashiro4, Andrea Mazollari5, Tokushi Sato3, Jaynath Koliyadu3, Sarlota Birnsteinova³, Eleni Myrto Asimakopoulou², Chan Kim³, Romain Letrun³, Richard Bean³, Andrea Mazzolari⁵, Jozef Ulicny⁶, Alke Meents¹, Adrian P. Mancuso⁷, Daniel Eakins⁸, Alexander Korsunsky⁸, Hitoshi Soyama⁹ ¹Center for Free-Electron Laser (CFEL), DESY, Notkestraße 85, 22607 Hamburg, ²Synchrotron Radiation Research and NanoLund, Lund University, Box 118, Lund, 221 00, Sweden, ³European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, ⁴International Center for Synchrotron Radiation Innovation Smart (SRIS), Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, Miyagi 980-8577, Japan, ⁵Ferrara University, Department of Physics and Earth Science, Via Saragat 1, 44122 Ferrara, Italy, ⁶Faculty of Science, Department of Biophysics, P. J. Šafárik University, Jesenná 5, 04154 Košice, Slovakia, ⁷Diamond Light Source, Harwell Science and Innovation 28 Campus, OX11 ODE, United Kingdom, ⁸Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK, ⁹Department of Finemechanics. Tohoku University. 6-6-01 Aramaki, Aoba-ku, Sendai 980-8579, Japan We demonstrate megahertz X-ray multiprojection X-ray imagingbased on a novel X-ray splitting scheme compatible with SASE sources. This scheme generates multiple beamlets from the primary beam and orchestrates their rotation around the sample. Each synchronized projection is captured and imaged using fast MHz indirect detectors. We validated this setup by imaging the coalescence process of water droplets.

Poster session program p.153-

X0PT8-02 14:00

The Soft X-ray Monochromator at the SASE3 beamline of the European XFEL Natalia Gerasimova, Daniele La Civita,

Liubov Samoylova, Maurizio Vannoni, Raul Villanueva, David Hickin, Robert Carley, Benjamin van Kuiken, Loic Le Guyader, Laurent Mercadier, Giuseppe Mercurio, Justine Schlappa, Martin Teichmann, Harald Sinn, Andreas Scherz European XFEL

We report on design, implementation and successful operation of the soft X-ray grating monochromator at the SASE3 beamline of the European XFEL. The FEL-specific challenges and prospects towards optimal design performance are discussed.

X0PT8-03

Withdraw

----- Coffee Break 14:15-14:55 -----

	Oral, Thursday	, 25 April PM	
ALPS <room 303=""></room>	ALPS <room 511+512=""></room>	BISC <room 419=""></room>	HEDS <room 311+312=""></room>
ALPS21-04 14:15	ALPS25-03 14:15	[BISCp]	
Quantum Spectroscopy using 2D Spectrum of Telecom-band Frequency Entangled Photons for Quantum Remote Sensing Wasahiro Ishizeki ¹ , Takeru Naito ¹ , Takahisa Kuwana ¹ , Akifumi Asahara ^{1,2} , Ayosuke Shimizu ^{1,2} , Kaoru Minoshima ^{1,2} University of Electro-Communications, Plastitute for Advanced Science, The Univ. of Electro-Communications Spectroscopy method using frequency correlation of nonlocal entangled photons was developed. The principle of indirect spectroscopy was verified by sample with known spectral characteristics, which leads to quantum remote sensing application through real-world fiber network.	Dual-Wavelength Diode Laser Injection-Locked for Quantum Cryptography Yung-Hsuan Li ¹ , Szu-En Lai ¹ , Chih-Hsien Cheng ³ , Atsushi Matsumoto ³ , Kouichi Akahane ³ , Gong-Ru Lin ^{1,2} ¹ National Taiwan University, ² NTU-Tektronix Joint Research Center, Tektronix Inc. and National Taiwan University, ³ National Institute of Information and Communications Technology A dual-mode diode laser is master-to-slave injection-locked for wavelength switchable single-photon DPS-OKD transmission at a clock rate of 1 Gbit/s with interferometric visibility of 99.2% for stabilized decoding over 3000 seconds.		
ALPS21-05 14:30	ALPS25-04 14:30		HEDS9-04 14:30
Parallelization of temporally multiplexed matrix-vector multiplication with distribute feedback based on Rayleigh backscattering in an optical fiber Daichi Hitotsumatsu', Kaoru Minoshima ^{1,2} , Naoya Kuse ¹ <i>Tokushima University, ²The University of Electro-Communications</i> We simultaneously execute two nonlinear principal component analyses by parallelizing temporally multiplexed matrix-vector multiplication, which is based on Rayleigh backscattering in an optical fiber, aiming for massive parallelization through the use of optical frequency combs.	Loss tolerant protocol for GHZ-state distribution in a star optical network Hikaru Shimizu, Wojciech Roga, Masahiro Takeoka <i>Keio University</i> We propose an efficient protocol for the distribution of GHZ-state which is a type of multipartite entanglement . We also analyse the performance of our protocol under realistic conditions.	Poster session program p.149-	Global MHD simulations of accretion onto a protostar from an MRI-turbulent disk Shinsuke Takasao', T. Hosokawa ² , K. Tomida ³ 'Osaka University, ² Kyoto University, ³ Tohoku University We examine how gas accretes from a magnetized accretion disk onto a protostar, using 3D magnetohydrodynamic simulations. Our simulations show that the protostar is easily strongly magnetized as a result of the interaction with the disk.
Coffee Break 14:45-15:00	ALPS25-05 14:45		HEDS9-05 14:45
[ALPS22] 15:00-16:15 Optical frequency combs / Frequency stabilized lasers and applications (5) Chair: Takashi Kato University Electro-Communications	Proposal for a robust single-photon interference-based quantum repeater Daisuke Yoshida ^{1,2} , Tomoyuki Horikiri ^{1,2} <i>'Yokohama National University,²LOUOM Inc.</i> We propose a quantum repeater scheme based on single-photon interference using multimode quantum memory. The proposed scheme reduces the stability requirement by several orders of magnitude compared to conventional schemes.	Coffee Break 15:00-15:30 [BISC7] 15:30-17:00 Session 7 Chair: Dalip Singh Mehta Institute of Technology	Particle acceleration in scaled kinetic simulations of high-energy-density plasmas Samuel Richard Totorica ^{1,2} , Kirill Lezhnin ³ , Will Fox ^{1,3} ¹ Princeton University, ² National Institutes of Natural Sciences, ³ Princeton Plasma Physics Laboratory We develop a method for accurately modelling particle collisionality in scaled kinetic simulations of high-energy-density plasmas.
ALPS22-01 15:00 Invited	Coffee Break 15:00-15:15	BISC7-01 15:30	HEDS9-06 15:00
Practical Dual Comb Spectroscopy to improve Energy Systems: Navigating the Interfaces Between Science, Engineering, and Industry Gregory B Rieker ^{1,2} 'University of Colorado, ² LongPath Technologies, Inc. will describe the journey of frequency comb aser technology from a laboratory novelty to various applications, including detecting methane emissions across hundreds of square kilometers of oil and gas infrastructure and exploring chemical reactions. ALPS22-02 15:30 Measurement of detailed single- photon ultra-fast pulse characteristics by asynchronous optical sampling using a dual-wavelength combs Hajime Komori ¹ , Prasad Koviri ¹ , Masahiro Ishizeki ¹ , Haochen Tian ^{1,2} , Thomas R Schibli ³ , Takashi Kato ^{1,4} , Kkifumi Asahara ^{1,4} , Ryosuke Shimizu ^{1,4} , Kaoru Minoshima ^{1,4} Graduate School of Informatics and Engineering, The University of Electro- Communications, ² JSPS International Research Fellow, ⁹ University of Colorado Boulder, Boulder, ⁴ Institute for Advanced Science, The University of Electro-Communications We developed an asynchronous optical sampling technique for single-photon time-resolved pross-correlation measurements using a dual-wavelength comb. We obtained the detailed frequency chirp temporal characteristics of the	[ALPS26] 15:15-17:15 Quantum optics and their applications (3) Chair: Ryosuke Shimizu The University of Electro- Communications ALPS26-01 15:15 Invited Quantum operation using nonlinear interaction between single photons Yoshiaki Tsujimoto National Institute of Information and Communications Technology The nonlinear interaction between single photons is a key building block in photonic quantum information processing. In this presentation, I talk about two research topics using such nonlinear interactions: the quantum interference and single-photon nonlinearity.	Development of Multi-view Optical Coherence Tomography (OCT) and Image Registration Algorithm for Tooth Imaging Zi-Wen Kao ¹ , Pei - Chen Sung ¹ , Fang - Ying Hua ² , Chuan - Bor Chueh ¹ , Heng - Yu Li ¹ , Ting - Hao Chen ¹ , Yin - Lin Wang ² , Hsiang - Chieh Lee ^{1,3} ¹ <i>Graduate Institute of Photonics and</i> <i>Optoelectronics, National Taiwan University,</i> ² Department of Dentistry, National Taiwan University Hospital, ³ Department of Electrical Engineering, National Taiwan University In this study, we developed a high-speed Swept-Source OCT for volumetric tooth imaging. Utilizing a dual-axis goniometer, we captured multi-view images and applied ICP-based stitching algorithm to eliminate artifacts caused by inherent optical properties of teeth. BISC7-02 15:45 Full-eye imaging using swept-source OCT based on HCG-VCSEL Chien-Hua Peng ¹ , Jian-Zhi Wang ¹ , Kuang-Lei Huang ¹ , Ting-Hao Chen ¹ , Jyh-Tsung Hsieh ² , Hsiang-Chieh Lee ¹ <i>'National Taiwan University, ²Bandwith10 Ltd.</i> In this research, we have developed a dedicated full eye imaging system employing HCG-VCSEL, an alternative cost-effective option for SS-OCT light source. The phase linearity and stability of the light source were assessed. The whole eye model OCT image and the evaluation of the axial length of the model eye verify the feasibility to use	High-energy neutrino emission from collisionless shocks in black hole coronae Minh Nhat Ly', Takayoshi Sano ¹ , Yoshiyuki Inoue ^{2,3,4} , Youichi Sakawa ¹ , Yasuhiko Sentoku ¹ ¹ Institute of Laser Engineering, Osaka University, ² Department of Earth and Space Science, Graduate School of Science, Osaka University, ³ Interdisciplinary Theoretical & Mathematical Science Program (iTHEMS), RIKEN, ⁴ Kavil Institute for the Physics and Mathematics of the Universe (WPI), UTIAS, The University of Tokyo Diffusive shock acceleration scenario has been proposed to explain proton acceleration leading to high-energy neutrino production in black hole corona. Here, we employ PIC simulations of collisionless shocks using parameters derived from NGC 1068 coronae to thoroughly examine this scenario. Coffee Break 15:15-15:35

	Oral, Thursda	y, 25 April PM		
IP <room 414+415=""></room>	LDC <room 301=""></room>	LEDIA <room 211+212=""></room>	LSC <room 421=""></room>	
[IPp]	[LDCp]	LEDIA6-05 14:15	LSC5-04 14:15 Invited	
		Thickness Dependence on Crystallinity of (11-22) AIN Thin Films Fabricated by Sputtering and Annealing Method R. Akaike ¹ , D. Kobayashi ² , T. Nakamura ³ , H. Miyake ⁴ ¹ ORIP, ² Fac. of Eng., ³ MRPCO, ⁴ Grad. Sch. of Eng. Mie University Semipolar face-to-face annealed sputter- deposited AIN (FFA Sp-AIN) are expected to achieve high crystallinity and light extraction efficiency. We evaluated the thickness dependence of crystallinity on (11-22) FFA Sp-AIN by X-ray diffraction (XRD) method.	Applied Research using Synchrotron Mössbauer Source on BL11XU at SPring-8 Kosuke Fujiwara, Takaya Mitsui National Institutes for Quantum Science and Technology The synchrotron radiation Mössbauer spectroscopy station, which generates high brilliant Mössbauer γ-rays, is installed on BL11XU at SPring-8. Unlike γ-rays from radioactive isotope (RI) source, this γ-ray has a small divergence and purely linear polarization. We will introduce applied research using this γ-ray, focusing on microspectroscopy and grazing incidence spectroscopy.	
		LEDIA6-06 14:30	LSC5-05 14:35	
Poster session program p.151-	Poster session program p.152	Using solid AICI3 for homoepitaxial growth of thick AIN layers by HVPE T. Nukaga ¹ , H Sakano ² , T. Nishida ^{2,1} , T. Kai ¹ , M. M. Tsuchiya ¹ , K. Sasakura ¹ , Y. Y. Kumagai ² 'Stanley Electric Co., Ltd, ² Tokyo University of Agriculture and Technology HVPE-AIN layers were grown on +c planes of PVT-AIN(0001) substrates using solid AICI3 (5N grade) as AI source. Crystal quality of these HVPE-AIN layers was found to be comparable to that of PVT-AIN substrates.	Terahertz-Streaking Method for Electron Pulse Duration Measurements Ryota Nishimori ¹ , Godai Noyama ¹ , Wataru Yajima ¹ , Yusuke Arashida ¹ , Kou Takubo ² , Shin-ya Koshihara ² , Shoji Yosida ¹ , Masaki Hada ¹ ¹ University of Tsukuba, ² Tokyo Tech Ultrafast time-resolved electron diffraction measurements have directly clarified the atomic-level structural dynamics triggered by photoexcitation on the femto-to- picosecond time scale. We are measuring an extremely short electron pulse duration (under 100fs), which determines the time resolution of the setup, using the electric field of THz pulses (THz streaking method).	
		Coffee Break 14:45-15:00	,	
		[LEDIA7] 15:00-16:15 Photo detectors Chair: T. Takeuchi <i>Meijo Univerisity</i>	LSC5-06 14:50 Time-resolved experiments using unique pulse structure at the SPB/SFX scientific instrument of the European XFEL Tokushi Sato', R. Letrun', J. Koliyadu', V. Bellucci', J. Bielecki', C. Kim', Y. Kim', R. de Wijn', S. Birnsteinova', J. E.', A. Round', M. Sikorski', P. Vagovič', R. Bean' 'European XFEL GmbH, ² Center for Free- Electron Laser Science (CFEL), DESY	
			Recently, MHz X-ray microscopy was established and opened for user program at the	
		LEDIA7-01 15:00 Invited	SPB/SFX instrument of the EuXFEL. This talk will discuss on fundamental instrumentation	
		Perovskite solar cells: Candidates as photoreceivers for optical wireless power transmission Ryousuke Ishikawa	and introduce microsecond measurements.	
		Tokyo city University Perovskite solar cells are attracting much attention as next-generation solar cells. In this lecture, I will introduce the basics and latest trends of perovskite solar cells, and then discuss our optical wireless power transmission (OWPT) application example.	[LSC6] 15:25-17:25 New materials, techniques, and theory (1) Chair: Kosuke Fujiwara National Institutes for Quantum Science and Technology	
			LSC6-01 15:25 Invited	
		LEDIA-CL 15:30 Closing Remarks	Time- and space-resolved soft X-ray measurement for magnetization dynamics	
		Narihito Okada ¹ , Tohru Honda ² ¹ Yamaguchi University, ² Kogakuin University	Yuta Ishii <i>Tohoku University</i> We recently established time- and	

Yuta Ishii Tohoku University We recently established time- and space-resolved soft X-ray measurements for the detection of spin waves in magnetic thin film samples. In my presentation, I'd like to introduce this technique and some experimental results.

	Oral, Thursday		
LSSE <room 316=""></room>	OMC <room 418=""></room>	OWPT <room 304=""></room>	SLPC <room 416+417=""></room>
LSSE10-04 14:40 Miniaturized Laser Heads for Quantum Sensing Applications in Space Ahmad Bawamia, Jan Markus Baumann,	[OMCp]	OWPT7-04 14:30 J-ipinction InGAAs solar cells for optical wireless power transmission Reo Aoyama', Shunsuke Shibui', Kousuke Watanabe', Junichi Suzuki', Ryota Warjagya', Kouichi Akahane ² , Shiro Uchida' 'Chiba Institute of Technology, ² National Institute	Coffee Break 14:30-14:45
Jonas Strobelt, Karl Häusler, Christian Kürbis, Andreas Wicht Ferdinand-Braun-Institut (FBH), Leibniz-Institut fuer Hoechstfrequenztechnik We present our miniaturized lasers tailored for high-end quantum sensing applications n space, based on requirements such as optical output power, narrow linewidth,	Poster session program p.152-	of Information and Communications Technology We investigated the conversion efficiency for optical wireless power transmission using 3-junction InGaAs solar cells. When irradiated with 1550 nm laser light,we obtained a conversion efficiency of 24.1% due to the 3-junction solar cell structure.	[SLPC11] 14:45-15:30 Welding 2 Chairs: Jörg Volpp Luleå University of Technology Yuji Sato Osaka University
frequency agility, suppression of amplified		OWPT7-05 14:45	SLPC11-01 14:45 Invite
spontaneous emission and optical feedback.		Evaluation of properties of CsPb(Br_{1-x} Cl _x) ₃ films as light absorbing layer in	Laser welding of copper by high- power visible laser
	[OMC11] 15:00-17:00 Session 9 Chairs: Peter Barker University College London Ken-Ichi Yuyama Osaka Metropolitan University	photovoltaic power converter for blue light source Atsuto Watanabe, Shinsuke Miyajima <i>Tokyo Institute of Technology</i> We successfully deposited a CsPb(Br _{1-x} Ch ₂) ₃ film with a bandgap of 2.7 eV for blue-light (455 nm) photovoltaic power converter. The Cl/(Br+Cl) ratio of the film was found to be about 55%.	Daisuke Nakamura ¹ , Toshifumi Kikuchi ¹ , Ryuma Takabatake ¹ , Masahiro Koba ¹ , Rikuto Kokubo ¹ , Hiroshi Ikenoue ² ¹ Kyushu University, ² Kochi University of Technology The weld cross section and spatter generatii in hairpin welding of copper wire using blue and green lasers were investigated.
Coffee Break 15:00-15:30	OMC11-01 15:00	Coffee Break 15:00-15:30	
II CCE111 15:20 16:20	chirality-enhanced gap antennas using topology optimization Atsushi Taguchi, Keiji Sasaki <i>Hokkaido University</i> We present that a chiral nanostructure, designed using topology optimization, can amplify optical chirality within a nano- confined nano-volume. The chirality enhancement was elucidated with a continuous fluid model of light's spin angular momentum, which led to a design strategy for highly efficient chiral nanostructures.	INWDT81 15:20.17:00	SLPC11-02 15:15 Elucidation of the effect of blue diode laser preheating on lap welding of pure copper using blue-IR hybrid lase Shumpei Fujio ¹ , Yuya Koyama ² , Mao Sudo ¹ , Keisuke Takenaka ³ , Yuji Sato ³ , Minoru Yoshida Masahiro Tsukamoto ³ ¹ Graduate School of Engineering, Osaka University, ² Faculty of Science and Engineering, Kindai University, ³ Joining and Welding Research Institute, Osaka University Lap welding of pure copper was conducted wi a blue-IR hybrid laser. Through the experiment the effect of the blue diode laser preheating or the lap welding of pure copper was elucidated
[LSSE11] 15:30-16:30 Space Technology 4		[OWPT8] 15:30-17:00 Session 8	
Chair: Norihito Saito <i>RIKEN</i>		Chair: Masakazu Arai Univ. of Miyazaki	
SSE11-01 15:30 Invited	OMC11-02 15:30	OWPT8-01 15:30 Invited	Coffee Break 15:30-15:45
(TBD) Daisuke Sakaizawa <i>JAXA</i> (TBD)	Manipulation of Vibrational States of CO ₂ with Mid-Infrared Pulses Ikki Morichika, Hiroki Tsusaka, Satoshi Ashihara <i>The University of Tokyo</i> We demonstrate vibrational ladder climbing of carbon dioxide by using intense mid-infrared pulses. The transient absorption spectroscopy confirms excitation up to the v = 9 state in a liquid phase. This result makes an important step toward controlling	Near-UV photoelectric transducers for OWPT systems based on GalnN multiple quantum-well structures Makoto Miyoshi Nagoya Institute of Technology This paper presents our recent results of GalnN-based photoelectric transducers for OWPT systems. Herein, the fabricated devices exhibited a high power conversion efficiency of approximately 44% at near-UV illuminations.	[SLPC12] 15:45-16:45 Functional Surface Manufacturing / Others Chairs: Miho Tsuyama <i>Kindai University</i> Rie Tanabe <i>Fukuoka Institute of Technology</i> SLPC12-01 15:45
	carbon dioxide conversions.		Temperature and surface tension of
	OMC11-03 15:45 Detection of a polarized emission of		laser-induced falling drops Joerg Volpp Luleå University of Technology
	fluorescent molecules on a plasmonic chip Keiko Tawa, Yuma Yoshida, Yasunori Nawa <i>Kwansei Gakuin University</i> More than 500-fold enhanced fluorescence		Both the falling drop and surface wave analysis were used to determine surface tension values in this work. Surface waves could be related to the surface temperature

Oral Program

Averalised Ganuil University More than 500-fold enhanced fluorescence intensity of Cy5 interacted with biotin immobilized to the plasmonic chip was observed with the circularly polarized incident light. The prominent polarized emission of Cy5 was also observed in 480 nm-pitch plasmonic chip. Both the falling drop and surface wave analysis were used to determine surface tension values in this work. Surface waves could be related to the surface temperature, which gives high temperature surface tension values. By measuring the surface tension of a falling drop and comparing this value to the determined relation from the surface wave analysis, the surface temperature of the drop could be indirectly estimated.

Oral, Thursday, 25 April PM

ALPS <Room 303>

ALPS <Room 511+512>

BISC <Room 419>

HEDS <Room 311+312>

[HEDS10] 15:35-17:00

Particle Acceleration 3 Chair: Natsumi Iwata Osaka University

HEDS10-01 15:35

Invited

Laser-driven x-ray sources for high energy density science at the Jupiter Laser Facility Félicie Albert

IIN We present recent experimental developments of x-ray sources based on laser-plasma interaction at the Jupiter Laser Facility. They are developed for applications including non-destructive imaging and high energy density science at several LaserNetUS facilities.

HEDS10-02 16:00

Bright Gamma Flash Generation and Detection

Alexander Pirozhkov¹, A. Sagisaka¹, K. Ogura¹, T. Zh. Esirkepov¹, B. Gonzalez Izquierdo¹,
 E. A. Vishnyakov², C. Armstrong³, T. A. Pikuz^{4,11}, C. Arran⁵, S. A. Pikuz⁶, W. Yan⁷, T. M. Jeong², S. Singh⁸, P. Hadjisolomou², O. Finke² G. Grittani², M. Nevrkla², C. Lazzarini² A. Velyhan², T. Hayakawa¹, Y. Fukuda¹, J. K. Koga¹, M. Ishino¹, Ko. Kondo¹, Y. Miyasaka¹, A. Kon¹, M. Nishikino¹ Y. V. Nosach⁹, D. Khikhlukha², I. P. Tsygvintsev¹⁰ ¹KPSI QST, ²ELI-BL, ³CLF RAL, ⁴Osaka University, ⁵University of York, ⁶HB11 Energy Holdings, ⁷Shanghai Jiao Tong University, ⁸Institute of Plasma Physics ASCR, ⁹Institute of Physics NASU, 10 ISTEQ AR, 11 Osaka University Gamma Flash is one of the most promising laser-plasma interaction regimes with predicted 30-40% conversion efficiency to y rays. We generated γ -Flash with the J-KAREN-P laser. Here we describe achieving high on-target intensity (~ 10^{22} W/ cm²), an experimental method to separate γ -Flash from Bremsstrahlung, and γ -Flash spectral shape reconstruction using scintillator stack spectrometer

HEDS10-03 16:15

Study on picosecond measurement of relativistic electron impact ionization inside solids

Masato Ota1,2,3, Koichi Kan4,5, Yasunobu Arikawa³, Makoto Nakajima³ ¹National Institute for Fusion Science, ²The Graduate University for Advanced Studies. ³Institute of Laser Engineering, Osaka University, ⁴National Institutes for Quantum Science and Technology, ⁵Institute of Scientific and Industrial Research

Relativistic beam-solid interaction is investigated by electro-optic (EO) sampling. We inject a high-energy electron beam into an EO crystal and measure picosecond spatiotemporal evolution of electron impact ionization and subsequent avalanche effect inside the crystal.

ALPS22-03 15:45

Self-calibrated free-running dualcomb ranging using subsampled repetition frequency information

Qiuying Ma1, Haoyang Yu2, Kai Ni ¹Tsinghua University, ²Central South University We introduced a self-calibration technique that can directly extract the subsampled repetition frequency information from the interferograms. With this technology, a real-time calibration of free-running dual-comb ranging can be achieved without extra repetition frequency detection module.

ALPS22-04 16:00

Phase stabilization of an optical interferometer using two lasers at differenet wavelengths for entanglement distribution

Yohei Sugiyama¹, Riho Amaki¹, Yuto Shitaka¹, Tomoki Tsuno^{1,2}, Daisuke Yoshida^{1,2}, Koji Nagano², Tomovuki Horikiri^{1,1} Feng-Lei Hong¹, Daisuke Akamatsu¹ Yokohama National University, ²LQUOM Inc. We demonstrated phase stabilization of an optical interferometer by using two lasers at different telocom wavelengths for entanglement distribution between remote quantum repeater nodes

ALPS26-02 15:45

Simple quantum state tomography of single-photon entanglement Joe Yoshimoto¹, Hikaru Shimizu¹ Junko Ishi Havase¹. Ikuta Rikizo² Masahiro Takeoka1 ¹Keio University, ²Osaka University

We propose a simple and loss tolerant quantum state tomography of photonnumber entanglement. It requires only local measurements and thus is relevant for quantum communication applications.

ALPS26-03 16:00

Quantum frequency conversion on thin film lithium niobate platform Xina Wang², Ming-Yang Zheng¹ Jinan Institute of Quantum Technology, ²University of Science and Technology of China In this work, we demonstrate a low-noise quantum frequency conversion (QFC) process on thin film lithium niobate (TFLN) nanophotonic platform designed to connect telecom and near-visible bands with sum-frequency generation by longwavelength pumping.

of Medical Device and Imaging, National Taiwan University, Taipei 10617, Taiwan, ³Computational Optics Group, University of Tsukuba, Tsukuba, Japan, ⁴Department of Electrical Engineering, National Taiwan University, Taipei, 10617 Taiwan In this study, we have developed a compact, high-speed spectral-domain optical coherence microscopy (SD-OCM) system for examining lung carcinoma (CA) tumor cell spheroids, that is equipped with a dynamic

Dynamic imaging of the lung carcinoma

(CA) cell spheroid with optical coherence

microscopy (OCM) technology

¹Graduate Institute of Photonics and

Optoelectronics, National Taiwan University,

Taipei 10617, Taiwan, ²Graduate Institute

Pei-Chin Huang¹, You-Nan Tsai¹

Yin-Shen Cheng¹, Yu-Chun Lin² Yoshiaki Yasuno³, Hsiang-Chieh Lee^{1,4}

----- Coffee Break 16:15-16:30 -----

ALPS26-04 16:15

Development of cavity two-photon sources for implementation of long-distance quantum communication Tomoki Tsuno^{1,2}, Riku Sasaki¹, Hiroki Tateishi¹, Daisuke Yoshida^{1,2}, Kazuya Niizeki², Koji Nagano², Daisuke Akamatsu¹ Feng-Lei Hong¹, Tomoyuki Horikiri¹ Yokohama National University, ²LQUOM, Inc We are developing cavity two-photon sources for the Quantum Internet and will discuss our latest progress to utilize these sources for entanglement generation

between two distant quantum memories.

BISC7-04 16:15

image analysis algorithm.

BISC7-03 16:00

Theoretical and numerical investigation of intracellular dynamic and its influence on dynamic optical coherence tomography signals

Yuanke Feng¹, Shumpei Fujimura¹ Yiheng Lim¹, Thitiya Seesan¹, Rion Morishita¹, Ibrahim Abd El-Sadek^{1,2}, Pradipta Mukherjee¹, Yoshiaki Yasuno¹

¹The University of Tsukuba, ²Damietta University

In this study, we proposed a DOCT signal simulator using mathematical modeling of intracellular activities. Numerical simulation was performed by using the mathematical model to recapitulate the specific temporal fluctuation of OCT signals. After computing two DOCT contrasts, the relationship between the DOCT signals and the tissue activities was investigated.

Oral, Thursday, 25 April PM

LSC <Room 421>

LSC6-02 15:45

Invited

Invited

Advancement of data analysis at SPring-8 by Synchrotron Radiation Data-driven-science Group

Yuichi Yokoyama¹, Masaichiro Mizumaki^{1,2}, Osami Sakata¹ ¹Japan Synchrotron Radiation Research Institute, ²Kumamoto University Synchrotron Radiation Data-driven-science Group was established in January 2023 to develop innovative analysis methods and incorporate them into beamlines at SPring-8. In this talk, we introduce our activities about spectrum analysis and image processing.

LSC6-03 16:05

Electronic coherence time in n-type gallium arsenide

Kazutaka Nakamura¹, Yosuke Kayanuma², Itsuki Takagi¹

¹Tokyo Institute of Technology, ²Osaka Metropolitan University

Electronic coherence time in n-type gallium arsenide is determined by using ultrafast quantum-path interferometry with quantum mechanical calculations. Its temperature dependence is discussed in terms of electron interaction with carriers, phonons and impurities.

LSC6-04 16:25

Invited

Band structure modification through high pressure application for tunable luminescence in fluoride crystals Marilau (adatal Podubal)² Lucas Vist Ma³

Marilou Cadatal Raduban^{1,2}, Luong Viet Mui³, Masahiro Yamashita², Yuki Shibazaki⁴, Nobuhiko Sarukura^{2,5}, Kohei Yamanoi² ¹Centre for Theoretical Chemistry and Physics, Massey University, ²Institute of Laser Engineering, Osaka University, ³Graduate School of Engineering, Osaka University, ⁴Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), ³New Industry Creation Hatchery Center (NICHe), Tohoku University

Fast decay emission from cross-luminescence (CL) in wide band gap fluoride crystals are in the vacuum ultraviolet (VUV) wavelength region. The ability to shift VUV luminescence to UV will enable easier detection of the fast emission. Uniform volume compression through hydrostatic high-pressure applications decreases the energy gap between the valence and core bands of KMgF and BaF crystals, potentially shifting their CL emission from 200nm (VUV) to 300nm (UV).

Oral, Thursday, 25 April PM

Invited

LSSE <Room 316>

LSSE11-02 16:00

Space Debris Solution with Spacebased pulse Laser, and Space LiDAR for Earth Observation Tadanori Fukushima Orbital Lasers

We have established a startup "Orbital Lasers co., Ltd" that uses space lasers to remove space debris and measure surface altitude of the earth. In this talk, we will show how we use lasers.

Invited OMC11-04 16:00

Levitodynamic spectroscopy for single nanoparticle characterisation Peter Barker

OMC <Room 418>

University College London

In this talk. I will describe a new nonintrusive characterisation method for optically trapped nanoparticles, based on the measurement of their rotational and oscillatory motion when levitated at low pressure

OWPT8-02 16:00

Study of Laser Power Converters based on GaN for High Power Applications

Javier F. Lozano¹, Natalia Seoane Enrique Comesaña², Florencia Almonacid³ Eduardo F. Fernández³ Antonio García-Loureiro1 ¹Centro Singular de Investigación en Tecnoloxías de Información (CiTiUS), Departamento de Electrónica e Computación, Universidade de Santiago de Compostela, ²Escola Politécnica Superior de Enxeñaría, Campus Terra. Universidade de Santiago de Compostela, Lugo, ³Advances in Photovoltaic Technology (AdPVTech), CEACTEMA, University of Jaér To overcome the main limitations of the high power laser transmission technology, we present modeled laser power converters made of gallium nitride, which open a path to broaden the applications in extreme environmental conditions

OWPT8-03 16:15

Incident Laser Wavelength dependence of temperature characteristics of InGaN solar cells for optical wireless power transmission

Junichi Suzuki¹, Shunki Hayashi¹, Shunsuke Shibui¹, Masahiro Koga¹, Ryusei Takahashi¹, Reo Aoyama¹, Takahiro Noguchi¹, Takahiro Fujisawa² Toshihiko Fukamachi³, Koichi Naniwae³ Shiori li4. Ruka Watanabe4. Makoto Mivoshi2. Tetsuya Takeuchi⁴, Satoshi Kamiyama⁴, Shiro Uchida1 ¹Chiba Institute of Technology, ²Nagoya

Institute of Technology, ³Ushio Inc, ⁴Meijyo University

We evaluated the incident laser wavelength dependence of temperature characteristics of InGaN solar cells. The results showed that the shorter the wavelength and the higher the temperature, the higher the conversion efficiency

OWPT8-04 16:30

Effective placement methods of light source infrastructure for dynamic EV charging using optical wireless power transmission

Mahiro Kawakami, Yusuke Suda, Tomoyuki Miyamoto

Tokyo Institute of Technology OWPT is an effective method for dynamic

charging of electric vehicles because OWPT is suitable for long-distance power transmission. To design effective light source placement methods, an infrastructure design simulator for OWPT was built, and the advantage of placing the light source near the deceleration point on the remaining battery capacity was clarified.

OWPT8-05 16:45

Suppression of water wave effects in blue laser-based underwater-to-air OWPT by a fly-eye lens system

Tatsuhisa Koiwa, Yamato Takahashi, Tomoyuki Miyamoto

Tokyo Institute of technology Underwater OWPT is expected to significantly expand the field of underwater applications. To overcome the limit of long-distance underwater light propagation caused by a still relatively large propagation loss, a system that propagates the beam between underwater and the air with low loss is attractive. The use of a fly-eye lens system to suppress the influence of water waves has been proposed, and its effectiveness has been confirmed by simulation and experiment.

SLPC <Room 416+417>

SLPC12-02 16:00

SLPC12-03 16:30

Toshiaki Kondo²

University of Technology

Gas

Laser-induced Local Nitridation of

¹Shibaura Institute of Technology, ²Aichi

Laser-induced nitridation of Aluminum was

attempted under hydrogen-mixed nitrogen

gas. Using X-ray photoelectron spectroscopy,

nitrogen was detected on the surface, which

suggests that nitridation has occurred.

[SLPC-CL] 16:45-17:00

Award & Closing Remark

Osaka University Yuji Sato

Ósaka Universitv

Chairs: Masahiro Tsukamoto

Haruto Mizuno¹, Shigek Matsuo¹,

Aluminum in Hydrogen-Mixed Nitrogen

Invited Formation of periodic nanostructures

on medical polymer surface with femtosecond laser irradiation Keisuke Takenaka, Yuji Sato, Masahiro Tsukamoto

Joining and welding research institute, Osaka university

Periodic nanostructures were formed on the interface between the medical polymer (poly-lactic acid) film and a titanium plate surface by using the femtosecond laser at the wavelength of 800 nm.

OMC11-05 16:30

Microspectroscopic analysis of a single liquid dropletformed by optical tweezers in a temperature responsive ionic liquid Rai Kobayashi

Osaka Metropolitan University

We demonstrate single droplet formation in a temperature responsive ionic liquid/water mixture by optical tweezers. Upon focusing a near-infrared laser beam into the mixture, a liquid droplet is formed at the focal spot due to optical trapping and laser heating. The concentration of the droplet depends on its size and the initial solution concentration. We also show that molecules can be extracted to the droplet, which is applicable to microanalvsis

OMC11-06 16:45

Levitation dynamics of mesoscopic absorbing particles in a 3D photophoretic trap

Anita Pahi, Avan Baneriee IISER KOLKATA

Our study shows interesting dynamics of mesoscopic particles in a photophoretic trap formed by a Gaussian beam. Trapped particles rotate with their rotation frequency being proportional to the trapping force. Some exhibit axial orbital rotation inversely linked to rotation frequency, revealing intricate equilibrium dynamics with particle-morphology dependence.

OWPT <Room 304>

Oral, Thursday, 25 April PM

TILA-LIC <Room 315>

XOPT <Room 313+314>

XOPT-CL 15:55 Closing Remarks

TILA-LIC7-02 16:00

Fiber-coupled high energy, low-cost Nd:YAG laser for ablative ignition applications

Tibor Bereczki, Gerhard Kroupa, Barbara Menezes de Oliveira, Dmitry Tabakaev *Silicon Austria Labs GmbH*

A small fiber-coupled high energy laser system could be a solution for ablationbased ignition systems. In this work, we are presenting a compact, low-price, highenergy Q-Switched Nd:YAG laser with a directly attached optical fiber.

TILA-LIC7-03 16:15

Fiber beam delivery system for ns high-energy pulses Dmitry Tabakaev, Barbara Nicoly Menezes de Oliveira, Tibor Bereczki, Gerhard Kroupa *Photonics systems, Silicon Austria Labs* We experimentally demonstrated that thick cladding multimode optical fibers allow for almost 100% energy coupling efficiency, the highest damage threshold up to 16 mJ at 2 ns pulses even when bent to 150 mm radius.

TILA-LIC7-04 16:30

interaction parameters.

Modeling of an Erbium-doped ZBLAN fiber laser including ion clustering Junha Jung, Ju Han Lee University of Seoul, South Korea Our recent research activities on modeling of an highly-doped Er:ZBLAN fiber laser are reviewed. Our model with ion clustering effect is shown to provide the calculation results in good agreement with the experimental ones without using weak

Invited

ALPS <Room 303>

[ALPS23] 16:30-17:30 Optical frequency combs / Frequency stabilized lasers and applications (6)

Chair: Sho Ookubo

National Institute of Advanced Industrial Science and Technology

ALPS23-01 16:30

Dual-Comb Spectroscopy from the IR to the Deep Ultraviolet for Characterization of Laser Plasmas

Jason Jones

The University of Arizona We utilize time-resolved dual-comb spectroscopy from the IR to the deep ultraviolet to measure evolving ionic, atomic, and molecular species within laser plasmas. Key parameters including atomic and molecular temperatures and electron densities are characterized.

Invited ALPS26-05 16:30

Generation of High-Purity Correlated Photons from a Silicon Waveguide using a Gain-Switched Laser Diode

ALPS <Room 511+512>

Fan Yang¹, Shogo Kimura¹, Yixin Wang², Keiichi Edamatsu³, Hiroyuki Yokoyama¹, Hirohito Yamada¹, Nobuyuki Matsuda¹ ¹Graduate School of Engineering, Tohoku University, ²State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, ³Research Institute of Electrical Communication, Tohoku University We demonstrate the generation of correlated photon pairs from a silicon waveguide using a gain-switched laser diode as a pulsed pump laser. We successfully obtained photons with a high spectral purity.

BISC7-05 16:30

Oral, Thursday, 25 April

Investigation of wavelength and resolution dependency of dynamic optical coherence tomography signals by experimental and simulation approaches

PM

BISC <Room 419>

Shumpei Fujimura¹, Ibrahim Abd El-Sadek^{1,2}, Praclipta Mukherjee¹, Yiheng Lim¹, Thitiya Seesan¹, Rion Morishita¹, Yuanke Feng¹, Yoshiaki Yasuno¹ ¹University of Tsukuba²Damietta University We investigate the wavelength and resolution dependency of dynamic optical coherence tomography (DOCT) signals by experimental and simulation approaches. Both approaches suggested that DOCT is highly affected by the wavelength, where shorter wavelength gives higher DOCT.

HEDS10-04 16:30

Effect of a plasma mirror on the interactions of intense laser pulses with micron-scale cluster targets

HEDS < Room 311+312>

Yuji Fukuda¹, Masato Kanasaki², Takafumi Asai^{1,2} Chihiro Inoue^{1,2}, Seiichiro Mochizuki², Reona Ozaki^{1,2}, Keita Toyonaga², Kaoru Maekawa² Takumi Minami^{1,3}, Kentaro Sakai⁴, Kosuke Himeno³ Tomoya Taguchi³, Kazumasa Oda³, Soichiro Suzuki³, Fuka Nikaido3, Kiyochika Kuramoto3 Toshiharu Yasui³, Syogo Isayama⁵, Syuta Tanaka⁶, Atsushi Tokiyasu⁷, Hideki Kohri⁸, Sergey N. Ryazantsev9, Tatiana Pikuz Satoshi Kodaira11, Tomoya Yamauchi2, Yuki Abe3, Yasuhiro Kuramitsu³, Akira Kon¹, Kotaro Kondo¹ Yuji Mashiba1, Yasuhiro Miyasaka1, Koichi Ogura1, Akito Sagisaka1, Hiromitsu Kiriyama1 ¹Kansai Institute for Photon Science (KPSI) National Institutes for Quantum Science and Technology (QST), ²Graduate School of Maritime Sciences, Kobe University, 3 Graduate school of Engineering, Osaka University, ⁴National Institute for Fusion Science (NIFS), ⁵Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, ⁶College of Science and Engineering, Aoyama Gakuin University, 7 Research Center for Electron Photon Science (ELPH), Tohoku University, ⁸Research Center for Nuclear Physics (RCNP) Osaka University, ⁹HB11 Energy Holdings Pty Ltd., Australia, ¹⁰Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 11 National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST) The effect of a plasma mirror (PM) on the laser-cluster interactions has been clearly visualized for the first time by using the Thomson scattering imaging. With the PM, the accelerated maximum proton energy has been increased up to ~35 MeV. By means of x-ray spectroscopy, after improvement of laser contrast by the PM, the interesting features of Ly_{α}-, He_{α}-, and K_{α}-line profiles of Ar have been observed.

HEDS10-05 16:45

Monoenergetic sub-relativistic ion acceleration with a nanolayer target mounted on large-area suspended graphene

Yasuhiro Kuramitsu¹, Rikimaru Kitamura¹, Naoya Tamaki¹, Takumi Minami^{1,2} Kentaro Sakai^{1,3}, Tomoya Taguchi Fuka Nikaido¹, Soichiro Suzuki¹, Yuki Abe¹, Hideaki Habara¹, Yasunobu Arikawa¹ Akifumi Yogo¹, Alessio Morace¹ Youichi Sakawa¹, Yuji Fukuda² Takehito Hayakawa², Leonard Dohl⁴, Nigel Woolsey⁴, Masato Kanasaki⁵, Atsushi Tokiyasu⁶, Hideki Kohri¹, Satoshi Kodaira², Shogo Isayama⁷, ShihHung Chen⁸, Chemen Chu⁸, KengTing Wu⁸, YuTzu Liao⁸, WeiYen Woon⁸ ¹Osaka University, ²QST, ³NIFS, ⁴University of York, ⁵Kobe University, ⁶Tohoku University, ⁷Kyushu University, ⁸National Central University Graphene is the thinnest and strongest 2D material, and the large-area suspended graphene (LSG) shows remarkable durability against the laser prepulse and pedestal that potentially destroy such extremely thin targets. We report monoenergetic and energetic ion acceleration with our novel nanolayer target mounted on LSG.

ALPS23-02 17:00 Dispersive interference ellipsometry with line-field configuration Jinxu Zhang, Liheng Shi, Lizong Dong,

Guanhao Wu Tsinghua University

TSITIYTUA UTIVETSILY

We demonstrate a line-field dispersive interference ellipsometry utilizing an anisotropic crystal, measuring the birefringent phase of a quarter-wave plate and SiO_2 film thickness. This method achieves line-field distribution within just 5 ms.

ALPS23-03 17:15

Non-contact Vital Sign Detection Based on Precision and Fast LiDAR

Lizong Dong, Siyu Zhou, Jinxu Zhang, Guanhao Wu *Tsinghua University*

We proposed an asynchronous sampling method based on electric pulse of femtosecond lasers. It can achieve a 38µm precision with 1MHz update rate and demonstrate its caability in non-contact vital sign detection.

ALPS26-06 16:45

Channel selective quantum frequency conversion Toshiki Kobayashi¹, Tomoaki Arizono¹,

Riku Arao¹, Shigehito Miki^{2,3}, Fumihiro China², Hirotaka Terai², Takashi Yamamoto¹, Rikizo Ikuta¹ 'Osaka University, ²National Institute of Information and Communications Technology, ³Kobe University

We report an experimental demonstration of a channel-selective quantum frequency conversion (QFC) from 780 nm to telecom wavelengths around 1540 nm by selecting one of multiple channels of pump light.

ALPS26-07 17:00

Quantum frequency conversion by PPLN waveguide with resonant structure for the converted mode

Shoichi Murakami^{1,2}, Toshiki Kobayashi^{1,2}, Shigehito Miki^{3,4}, Fumihiro China³, Hirotaka Terai³, Takashi Yamamoto^{1,2}, Rikizo Ikuta^{1,2}

¹Graduate school of Engineering science, Osaka University, ²Center for Quantum Information and Quantum Biology, Osaka University, ³Advanced ICT Research Institute, National Institute of Information and Communications Technology, ⁴Graduate School of Engineering, Kobe University We conducted quantum frequency conversion (OFC) in a PPLN waveguide incorporating a resonator structure into the converted mode. We present the noise characteristics and cavity enhancement effect of our device.

BISC7-06 16:45

Time-lapse imaging of tumor spheroid drug response by dynamic optical coherence tomography integrated with cell cultivation chamber

Ibrahim Abd El-Sadek^{1,3} Bion Morishita¹ Atsuko Furukawa², Masato Iwatsuki², Shuichi Makita¹, Pradipta Mukherjee¹ Satoshi Matsusaka², Yoshiaki Yasuno¹ ¹Computational Optics Group, University of Tsukuba, Japan, ²Clinical Research and Regional Innovation, Faculty of Medicine, University of Tsukuba, Japan, 3Department of Physics, Faculty of Science, Damietta University, Egypt We demonstrate time-lapse drug response imaging of tumor spheroids by integrating a spheroid cultivation chamber and dynamic optical coherence tomography (DOCT) microscope. This newly integrated system enables high-time-resolution imaging of a living sample. It successfully revealed the fine temporal and spatial responses of human breast cancer (MCF-7) spheroids to paclitaxel and doxorubicin.

Oral, Thursday, 25 April	РМ
	LSC <room 421=""></room>

LSC6-05 16:45

X-ray Magnetic Circular Dichroism for Antiferromagnets Norimasa Sasabe

Kumamoto University

Recently, x-ray magnetic circular dichroism (XMCD) has been observed in antiferromagnets. The simulations of XMCD for Mn_sSn and RuO_2 are presented, and the microscopic origin is discussed.

LSC6-06 17:05

Invited

Invited

Design and Fabrication of Novel Semiconductor Terahertz Photoconductive Antenna Emitter Devices at the National Institute of Physics University of the Philippines. Elmer Surat Estacio

University of the Philippines

We will present the University of the Philippines' work on MBE-grown antenna devices for terahertz time-domain spectroscopy. We will show results on novel layer designs and exploiting terahertz surface plasmons in enhancing the antenna performance.

ALPS <room 303=""></room>	ALPS <room 511+512=""></room>	BISC <room 419=""></room>	HEDS <room 311+312=""></room>
		[BISC8] 9:00-10:15 Session 8 Chair: Baoli Yao National Chinese Academy of Sciences	[HEDS11] 9:00-10:15 Collisionless Shock 4 Chair: Frederico Fiúza /ST
ALPS27] 9:30-10:45 Short wavelength light sources and applications (1) Chair: Kentaro Tomita		BISC8-01 9:00 Invited Approaches for Compact and High- Throughput Fourier Ptychography Kyungchul Lee, Kyungwon Lee, Hyesuk Chae, Hansol Yoon, Seung Ah Lee Yonsei University, Korea Approaches for Compact and High- Throughput Fourier Ptychography.	HEDS11-01 9:00 Invite Electron heating in high Alfvén Mach number collisionless shocks Anach Amo Vanthieghem ^{1,2,3} , Vassilis Tsiolis ² , Anatoly Spitkovsky ² , Yasushi Todo ⁴ , Kazuhiro Sekiguchi ³ , Frederico Fluza ^{5,6} ¹ Sorbonne Université, Observatoire de Paris, ² Department of Astrophysical Sciences, Princeton Université, Observatoire de Paris, ² Department of Astrophysical Sciences, Princeton University, ³ Department of Astro-fusion Plasma Physics (AFP), National Institute of Natural Sciences, ⁴ National Institute of Natural Sciences, ⁴ National Institute of Science, National Institutes of Natural Sciences, ⁵ Instituto Superior Técnico, Universidade de Lisboa, ⁶ High Energy Density Science Division, SLAC National Accelerator Laboratory High Alfvén Mach numbers shocks shape the emission in many astrophysical and laborator environments. The downstream temperature ratio between electrons and ions constitutes one of the most fundamental challenges in their modeling. I will introduce a new theoretical model that accounts for electron heating in an ambipolar-type diffusive process and discuss implications for electron injection
Hokkaido Univ. LPS27-01 9:30 Invited aser phase contrast imaging for the isualization of plasma fluctuations enji Tanaka ¹ , Toshiki Kinoshita ² , Hikona Sakai ² Vational Institute for Fusion Science, ² Kyusyu niversity hase contrast imaging enables to visualize ansparent object converting small phase ariation into intensity variation giving uarter wavelength path difference between cattered and non-scattered laser radiation. his technique is powerful to measure asma fluctuations.		BISC8-02 9:30 Ultrafast Time-Resolved Spectroscopy through a Thin Scattering Medium by Wavefront Shaping Kaoru Ohta Kobe University We implement a proof-in-principle experiment for time-resolved pump-probe spectroscopy through a thin scattering medium. In this method, only pump pulse is focused into a target position and speckle pattern is used as a probe pulse.	HEDS11-02 9:25 Invite Particle Acceleration Upstream of Relativistic Collisionless Shocks Masanori Iwamoto', Takanobu Amano ² , Yosuke Matsumoto ³ , Shuichi Matsukiyo ⁴ , Masahiro Hoshino ² "I'vyoto University of Tokyo, ³ Chiba University, ² The University of Tokyo, ³ Chiba University, ⁴ Kyushu University Particle acceleration at relativistic collisionless shocks is studied by particle-in cell simulations. We demonstrate that efficient particle acceleration occurs in the upstream and that nonthermal ions and electrons are generated. We discuss the detailed acceleration mechanism and estimate the maximum attainable energy.
		BISC8-03 9:45	
	[ALPS30] 10:00-11:15 Novel optical devices, materials,	Adjusting the Density of the Medium to Improve Refocusing in Biomedical Applications Yu-Yun Lu, Pei-Jie Chen, Snow H Tseng National Taiwan University Optical phase conjugation (OPC) holds the potential to counteract optical distortion caused by scattering effects in	HEDS11-03 9:50 Invite Shocks and energetic particles in weakly collisional plasmas Andrea Clardi ^{1,25} , Thershi Seebaruth ^{1,2,3,5,6,7} , Anna Grass ^{11,3,6} , Roch Smets ^{1,3,7} ,
	structure and applications (1) Chair: Takuma Aihara NTT	nonhomogeneous media. We find that a low-density medium enhances refocusing, and when the OPC span is exceeds 90 degrees, it approaches perfect refocusing.	Bruno Albertazzi ^{3,4,6} ¹ Sorbonne University, ² Observatoire de Paris, ³ Ecole Polytechnique, ⁴ CNRS, ⁵ LERMA, ⁶ LULI, ⁷ LPP
lew concept toward realization of ttosecond FELs and its experimental lemonstration akashi Tanaka ¹ , Yuichiro Kida ² , atoshi Hashimoto ³ , Shuji Miyamoto ^{3,5} , adashi Togashi ^{2,1} , Hiromitsu Tomizawa ^{2,1} , oi Gocho ⁴ , Keisuke Kaneshima ⁴ , oshihito Tanaka ^{4,1} RIKEN SPring-8 Center, ² Japan Synchrotron	ALPS30-01 10:00 Invited Dispersion-engineered Metasurfaces Enabling High-sensitivity Image Sensors Masashi Miyata NTT Device Technology Laboratories This talk will review pixelated metasurfaces for full-color sorting and their potential for making filter-free, high-sensitivity color image sensors.	BISC8-04 10:00 Fluorescence Imaging of Tobacco Cultured Cells through Scattering Medium using Transport of Intensity Equation and Object Domain Phase Retrieval Shiori Matsuda ^{1,2} , Naru Yoneda ^{1,3} , Manoj Kumar ^{1,3} , Osamu Matoba ^{1,3} ¹ Graduate School of System Informatics, Kobe Univ. ² Japan Society for the Promotion of Course of Octors of Oxignal International In	Plasma shocks are ubiquitous in astrophysical and laboratory settings, yet their structure and microphysics remain poorly understood, particularly in the weakly collisional regime. We report on modelling and experiments that probe laser-produced shocks across a wide range of collisionality. The results provide insights into the plasma dynamics, suprathermal ion populations an microinstabilities.
Adiation Research Institute, ³ Laboratory of dvanced Science and Technology for Industry, Iniversity of Hyogo, ⁴ Department of Material Science, University of Hyogo, ⁵ Institute of Laser ingineering, Osaka University proposal has been made to break the neoretical lower limit on the pulse length in		Science, ³ Center of Optical Scattering Image Science, Kobe Univ. We have applied the fluorescence imaging technique using transport of intensity equation and phase retrieval in object space to biological samples with a scattering medium In the experiments, we measured	

A proposal has been made to break the theoretical lower limit on the pulse length in FELs by means of "chirped microbunching". We experimentally demonstrated its fundamental mechanism in the NEWSUBARU storage ring.

----- Coffee Break 10:15-10:45 ----- Coffee Break 10:15-10:35 -----

medium. In the experiments, we measured tobacco culture cells through a weak diffuser.

Oral, Friday, 26 April AM IP <Room 414+415> LSC <Room 421> LDC <Room 301> LSSE <Room 316> [LDC11] 9:00-9:30 [LSC7] 9:00-10:15 AI and DX analysis for Smart Systems New materials, techniques, and Chairs: Eiji Hase theory (2) Tokushima University Chair: Yuta Ishii Sunao Kurimura Tohoku University National Inst. for Materials Science Invited LDC11-01 9:00

Invited

The effect of the online collaboration

method in social presence: reevaluating interaction through

Daniil Chepenko

SpatialChat Ltd.

online experiences.

[LDC12] 9:30-10:30

Imaging / Lighting 2

LDC12-01 9:30

excitation

clusters.

LDC12-02 10:00

biochemical analysis

¹Tokushima Univ., ²RIKEN

Ryo Kato^{1,2}

Kenta Temma^{1,2}

Medicine, Osaka University

Chairs: Yasuaki Kumamoto

Osaka University

Sunao Kurimura

Super-resolution microscopy for

volumetric samples using nonlinear

fluorescence responses via stepwise

¹Dept. of Applied physics, Osaka university,

²Dept. of Neurosurgery, Graduate school of

allowing the observation of internal

structures ranging from a single cell to cell

Mid-infrared chemical imaging using

In this talk, I will introduce our recent work

on chemical characterization of polymeric

mid-infrared photothermal (MIP) microscopy,

which is a cutting-edge super-resolution all

materials and biological samples using

optical infrared imaging technique

mid-infrared and visible lasers for

National Inst. for Materials Science

SpatialChat and AI integration

In the digital communication landscape.

online collaboration has become a pivotal

aspect of our interconnected world. The

impact of communication tools and

presentation synthesizes empirical research

and theoretical frameworks to analyze the

interaction modalities on social presence. Provide practical implications for educators,

and the academic community to enhance

IP7-01 9:00

[IP7] 9:00-10:15

Holography 1

Chair: Naru Yoneda

Kobe University

Numerical models for ultrafast diffraction in light-in-flight holography David Blinder^{1,2,3}, Takashi Kakue³

¹Vrije Universiteit Brussel, ²imec, ³Chiba Universitv

Light-in-flight (LIF) holography is an ultrafast imaging technique for single-shot simultaneous 3D and femtosecond time resolution acquisitions of light pulse propagation. However, the algorithms to model diffraction over short timescales are currently limited in scope, accuracy, and efficiency. We propose and validate computer-generated algorithm extensions for short-time scales.

IP7-02 9:30

Multiscale profile measurement by using multi-wavelength FMCW-digital holography

Hikaru Hamada, Varun Kumar, Masayuki Yokota Shimane University

We proposed multiwavelength digital holography using the hologram multiplexing in time-frequency domain based on FMCW technique. Three holograms recorded with different wavelengths were multiplexed, and the multiwavelength unwrapping was applied to measure the step object.

IP7-03 9:45

Detection of defects in the solar battery film using both digital holography and lock-in thermography

Varun Kumar, Masayuki Yokota, Taisei Kishikawa, Yusuke Wakabayashi Shimane University Japan

Artificially fabricated defects in a commercial solar battery film have been detected using combined method of digital holographic interferometry and lock-in thermography technique. The technique can be applied to electrical devices for their health monitoring.

IP7-04 10:00

The recent progress in holographic data storage technology

Xiao Lin, Jianying Hao, Yongkun Lin, Hongjie Liu, Ruixian Chen, Shenghui Ke, Rongquan Fan, Xiaoqing Zheng, Jie Zheng, Jing Xu, Dakui Lin, Kun Wang, Xiaodi Tan Fujian Normal University

We proposed a multi-modulated HDS solution employing the amplitude, phase and polarization at once. Based on principle of polarized holography, 2-channel polarized multiplexing can be realized. Combined with deep learning, a lensless near field diffraction intensity model can be used to demodulate four-level amplitude and four-level phase at the same time. Compared with traditional HDS, the multi-modulated HDS can increase the storage density by about 10 times.

----- Coffee Break 10:15-10:30 -----

LSC7-01 9:00 Invited **Comprehensive Study on Pyrosilicate** Scintillators with Synchrotron Beam

Shunsuke Kurosawa¹ Tohoku Universit, ²Osaka University The optical properties for Ce:(La, Gd)₂Si₂O₇ scintillation materials using a Synchrotron Beam at the Ultra Violet Synchrotron Orbital Radiation (UVSOR) facility were investigated, and I show its cystak growth and emission

LSC7-02 9:20

mechanism.

Soft X-Ray High Harmonic Generation Using a High-Repetition-Rate, Intense, Few-Cycle Long-Wavelength Light Source

Nobuhisa Ishii^{1,2}, Momoko Maruyama¹, Ryuji Itakura¹

¹National Institutes for Quantum Science and Technology, ²Japan Science and Technology Agency

We demonstrate an intense, few-cycle light source at 2000 nm using a high-power Yb:YAG thin-disk laser. The light source is applied to high harmonic generation from argon reaching the carbon K edge at 280 eV.

Ultrafast time-resolved electron diffraction measurements revealing energy transfer at the interface of one-dimensional heterostructures

The presentation shows the recent combined transient absorption measurements, and firstprinciples calculations on a one-dimensional nanotubes and boron nitride nanotubes.

LSC7-04 10:00

one-dimensional system

Godai Noyama1, Yui Iwasaki1, Shota Ono2, Yuri Saida¹, Yusuke Arashida¹ Thomas Gauither³, Nicolas Godin³, Gaël Privault³, Hiroo Suzuki⁴, Yasuhiko Hayashi4, Roman Bertoni3, Masaki Hada¹ ¹Univ. Tsukuba, ²Tohoku Univ., ³Univ Rennes,

⁴Okayama Univ. This study demonstrated the decay constants of photoexcited carriers as a function of probe energy in a representative one-dimensional material, carbon nanotubes, using broadband and ultrafast

[LSSE12] 9:30-10:30 Space Technology 5

Chairs: Katsushi Fujii RIKFN

Invited

Norihito Saito RIKEN

LSSE12-01 9:30

Invited

Invited

Recent trends of space laser communications and the future for Beyond 5G/6G

Morio Toyoshima National Institute of Information and Communications Technology

Space laser communications have potentially wider bandwidths, smaller equipment and lower power consumption for satellite communications. This paper introduces the trends and future of the space laser communications for the beyond

⁻ri, 26 April, AM

First application of laser melting method to ice core sampling to study climate change Yuko Motizuki¹, Yoichi Nakai¹ Kazuya Takahashi¹, Junya Hirose¹ Yu Vin Sahoo¹, Masaki Yumoto^{2,3} Masayuki Maruyama², Michio Sakashita², Kiwamu Kase², Satoshi Wada² Hideaki Motoyama⁴, Yasushige Yano ¹Astro-Glaciology Laboratory, RIKEN Nishina Center, ²Photonics Control Technology Team, RIKEN Center for Advanced Photonics ³Innovative Laser Processing Group, National Institute of Advanced Industrial Science and

Technology, ⁴National Institute of Polar Research We developed a novel Laser Melting Sampler (LMS) for ice cores to measure the stable water isotope ratios (δ 180 and δ D) as temperature proxies of the past. A segment of an Antarctic ice core, using the LMS, was demonstrated to have been discretely sampled with a depth resolution as small as 3 mm. In this talk, we will deliver the key and merit of using laser melting in ice core science. Reference: Motizuki Y, et al. Journal of Glaciology. 2023:1-7. doi:10.1017/jog.2023.52

5G and 6G era.

LSSE12-02 10:00

Invited

Super-resolution microscopy surpassed the classical diffraction limit of optical LSC7-03 9:40 microscopy. However, most of the techniques endure their ability only near the surface of the samples. We developed superresolution techniques using nonlinear fluorescence responses that localize within

Invited

the focus and suppress background signals, Masaki Hada

University of Tsukuba investigation of ultrafast time-resolved electron diffraction measurements, ultrafast van der Waals heterostructure of carbon

Invited

Dynamics of carrier relaxation in a

transient absorption spectroscopy and theoretical calculations.

----- Coffee Break 10:15-10:35 -----

Oral, Friday, 26 April AM

OWPT <Room 304>

[OWPT9] 9:30-10:30

Chair: Motoharu Matsuura

OWPT9-01 9:30

Leticia C Souza1

Inovação (IBTI)

Univ. Electro-Communications

PoF-based Wireless and Optical

Convergent Access Towards 6G

¹National Institute of Telecommunications (Inatel). ²Instituto Brasília de Tecnologia e

Power over Fiber (PoF) technology has been

considered potential for diverse applications,

Industrial Internet of Things and smart power

management. This Invited Paper is focused

on its use in 5G optical/wireless networks

towards 6G applications.

including avionics, telecommunications,

Arismar Cerqueira Sodré Junior^{1,2},

Session 9

OMC <Room 418>

[OMC12] 9:00-10:15 Session 10

Chairs: Halina Rubinsztein-Dunlop University of Queensland Alexander Govorov Ohio University

OMC12-01 9:00

Towards qudit quantum information processing on-chip using transverse modes

Invited

Mary Jacquiline Romero^{1,3}, Daniel Peace^{1,3}, Jamika Roque²

¹University of Queensland, ²University of the Philippines, ³ARC Centre of Excellence for Engineered Quantum Systems The transverse mode of photons in a waveguide is one under-explored property that can help towards scaling up integrated photonic devices. We show how inverse design can help with the design of robust devices, which will help towards the realisation of a universal, programmable, qudit quantum information processing on-chip.

OMC12-02 9:30

Fano-resonant Plasmonic Metamaterials for Nanoparticles Photoluminescence Enhancement

German Suslin, Giang Viet Truong, Hao Zhao, Akimitsu Narita, Sile Nic Chormaic *Okinawa Institute of Science and Technology Graduate University*

We demonstrate that the photoluminescence, emitted from nanoparticles in water solution, can be greatly enhanced by coupling to the plasmonic cavity mode using plasmonic metamaterial tweezers at Fano resonant frequency.

OMC12-03 9:45

Automated preparation of holographic data storage materials.

Rupeng Yang, Shaodong Zhang, Junhui Wu, Yiping Liu, Linlin Fan, Junchao Jin, Yongkun Lin, Xiao Lin, Xiaodi Tan *Fujian Normal University*

In the past, the recording materials used for holographic data storage—PQ/PMMA were manually prepared. However, manually prepared materials were not very stable in performance and contained many bubbles. Therefore, we decided to adopt an automated approach to produce the materials used for holographic data storage.

OMC12-04 10:00

Metasurface assisted Abrupt Autofocusing for Laser treatment applications

Surag Athippillil Suresh¹, Bo-Wei Huang², Sunil Vyas², Cheng Hung Chu², Yuan Luo², Kuang-Yuh Huang², Pan-Chry Yang², J. Andrew Yeh¹, Din Ping Tsai^{3,4} ¹National Tsing Hua University, ²National Taiwan University, ³Academia Sinica, ⁴City University of Hong Kong

This research investigates the use of metasurface optics for precise control of optical energies in biomedical based laser applications. It demonstrates the generation of an abrupt autofocusing beam (AAF) through a nanophotonic metasurface, which enables selective delivery of optical energy to specific regions of interest which is useful for various biomedical applications.

0WPT9-02 10:00

Optically Powered Hybrid 5G System Integrating A-RoF/FSO/VLC Technologies

Letícia Carneiro de Souza1 Tomás Powell Villena Andrade1 Felipe Batista Faro Pinto¹, Luis Gustavo Silva², Francisco Martins Portelinha Junior² Rodnei Carçola³, Evandro Lee Anderson³, Arismar Cerqueira Sodré Junior¹ ¹Laboratory WOCA, National Institute of Telecommunications, Inatel, ²Inatel Competence Center (ICC), National Institute of Telecommunications, Inatel, 3MPTCable We report the implementation of an innovative hybrid 5G system integrating analog radio-over-fiber (A-RoF), free-space optics (FSO), and visible light communications (VLC) technologies within the C-RAN architecture. Power-over-fiber (PoF) technology plays a key role in successfully powering a VLC LED and electrical amplifier.

<u>TILA-LIC <Ro</u>om 315>

[TILA-LIC8] 9:00-10:30 Bonding Technology & ATLA Project - 3

Chair: Hideki Ishizuki RIKEN SPring-8 Center, Sayo-gun, Japan

TILA-LIC8-01 9:00

Surface Activated Bonding for 3D and Heterogenous Integration at Room Temperature Tadatomo Suga

Invited

Meisei University

The current status and future challenges of surface-activated bonding, a lowtemperature bonding technology for 3D and heterogeneous integration, will be reviewed. It is expected to contribute to the threedimensional integration as well as to solving heat dissipation problems in photonic and high-power devices.

Invited TILA-LIC8-02 9:30

DFC PowerChip optical properties for J-class amplifier system

Arvydas Kausas^{1,2}, Akihiro Osanai¹, Vincent Yahia^{2,1}, Takunori Taira^{1,2} ¹*RIKEN SPring-8 Center*, ²*Institute for Molecular Science*

We measured bulk laser induced damage threshold values for various sapphire and Nd:YAG crystals grown by different manufacturers. The connection between color center absorption and low damage threshold value in sapphire is considered to be the main source of lower damage threshold value.

TILA-LIC8-03 9:45

Plasmon and Electronic-Resonance-Free Coherent Raman Spectroscopy Sensitive to Ultra-Thin Interfacial Layers Toshiki Sugimoto^{1,2}

¹Institute for Molecular Science (IMS), ²RIKEN SPring-8 Center (RSC) We demonstrate all-optical enhanced highly sensitive Raman spectroscopy that can be versatilely applicable to surface/interfacial ultrathin layers of optical materials without signal enhancements by plasmonic nanostructures and specific electronic resonances. Such spectroscopic innovation was achieved by three-colour coherent anti-Stokes Raman scattering that hybridizes time- and frequency-domain spectroscopic schemes.

TILA-LIC8-04 10:00

Effective thermal conductivity of DFC gain media Yoichi Sato^{1,2}, Kausas Arvydas^{1,2}, Takunori Taira^{1,2} '*RiKEN SPring-8 Center,*²Institute for Molecular Science

We confirmed the thermal resistance between bonded surfaces of the distributed face-cooled (DFC) gain media, which were made of Nd:YAG and sapphire. It indicates that the surface activated bonding technology enables us to enhance the 10 W/ mK of the YAG thermal conductivity over 27 W/mK effectively.

NOTE

Oral, Friday, 26 April AM

ALPS <Room 303>

ALPS <Room 511+512>

BISC < Room 419>

HEDS < Room 311+312>

ALPS27-03 10:30

Coherent super-continuum soft x-ray generation by a TW-class single-cycle laser

Kaito Nishimiya1,2, Dai Ikeda1,2, Rambabu Rajpoot¹, Eiji J Takahashi^{1,2} ¹Ultrafast Coherent Soft X-ray Photonics Research Team, RIKEN Center for Advanced Photonics, RIKEN, ²Extreme Laser Science Laboratory, RIKEN Cluster for Pioneering Research, RIKEN

We demonstrate carrier-envelope phasedependent high-order harmonic generation with over one-octave continuum soft x-ray bandwidth using single-cycle optical pulses at the mid-IR region.

----- Coffee Break 10:45-11:00 -----

[ALPS28] 11:00-12:00 Short wavelength light sources and applications (2) Chair: Takeshi Higashiguchi

Utsunomiya Univ

ALPS28-01 11:00 Next generation ultrafast laser for

attosecond science

Fiji J Takahashi RIKEN

A new form of optical parametric amplification with two different nonlinear crystals can generate a multi-TW carrier-toenvelope phase-stable single-cycle laser pulse in the mid-infrared region.

ALPS30-02 10:30

Varifocal Meta-devices for Bioimaging and Future 6G Communication

Jingcheng Zhang¹, Yin Zhou¹, Jialuo Cheng¹, Takuo Tanaka³, Din Ping Tsai^{1,} ¹City University of Hong Kong, ²The State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, ³RIKEN Center for Advanced Photonics

Meta-device is a new type of flat optical device composed of artificial nanostructures that can manipulate the incident electromagnetic wave's phase, polarization, and amplitude. We developed varifocal meta-lenses to manipulate the focusing spot in 1D for bioimaging in 2D and 3D for 6G communication

ALPS30-03 10:45

3D metasurface holograms of SiN for multicolor projection

Tamaki Onozawa, Junpei Beppu, Masakazu Yamaguchi, Kentaro Iwami

Tokyo University of Agriculture and Technology The high 95% diffraction efficiency and 83% transmittance were achieved in 3D metasurface holograms made of SiN high-aspect-ratio nanopillars (1394 nm). It enables observation with the naked eye and the time-division-multiplexing method for multicolor projection.

Invited ALPS30-04 11:00

Alvarez Metalens with Polarization Separation Function

Mitsutoshi Hada1, Hyo Adegawa1 Katsuma Aoki¹, Satoshi Ikezawa², Kentaro Iwami¹ Tokyo University of Agriculture and Technology, ²Waseda University We developed a varifocal metalens with polarization separation function of up to 17.8 dB and confirmed that its focal length can be varied in the range of 0.75 to 11.85 mm.

----- Lunch 11:15-13:15 -----

ALPS28-02 11:30

Soft X-Ray Laser Ablation Toward to Nanometer-Scale Depth Surface Patterning Masahiko Ishino

Invited

National Institutes for Quantum Science and Technoloav (QST)

Damage thresholds and structures on various materials induced by the soft x-ray free electron laser irradiations were evaluated. On the sapphire crystal surface, we found a novel processing structure having extremely shallow nanometer depth

Mu Ku Chen^{1,2} Xiaovuan Liu¹

[BISC9] 10:45-12:00 Session 9 Chair: Wataru Inami Shizuoka University

BISC9-01 10:45

Two-channel holography to reconstruct the scattered Stokes vector

Sourav Chandra, Rakesh Kumar Singh IIT BHU (Varansi) Coherent light propagating through scattering media generates laser speckles, obscuring polarization states of incident light. This paper introduces a new holography technique to evaluate Generalized Stokes parameters, subsequently extracting polarization states of the incident beam

BISC9-02 11:00

Common-path digital holographic microscope employing a volume holographic grating

Chen-Ming Tsai¹, Yuan Luo^{1,2,3} ¹Institute of Medical Device and Imaging, National Taiwan University, Taipei, 10051, Taiwan, R.O.C, ²Graduate School of Advanced Technology, National Taiwan University, Taipei, 10672, Taiwan, R. O. C, ³Yong-Lin Institute of Health, National Taiwan University, Taipei, 10087, Taiwan, R. O. C We proposed the common-path digital holographic microscope based on volume holographic grating (VHG). With VHG's unique diffraction characteristics, only a single diffraction order is generated with high efficiency and able to improve system power usage.

BISC9-03 11:15

3D fluorescence imaging by LC crystal lens-based single-shot incoherent digital holographic microscope Manoj Kumar, Masaya Nishimura,

Naru Yoneda, Osamu Matoba Kobe University, Japan

A liquid crystal lens-based single-shot and common-path framework of an incoherent digital holographic microscope is proposed to experimentally show the 3D fluorescence imaging of fluorescent beads and biological cells.

BISC9-04 11:30 Invited DMD-SIM for Super-Resolution and **Optical Sectioning Microscopy**

Baoli Yao, Dan Dan, Jia Qian, Wang Ma Chen Bai, Xianghua Yu, Xing Li, Rui Ma Chinese Academy of Sciences

Structured illumination microscopy (SIM) can perform both super-resolution and threedimensional (3D) optical sectioning imaging, attracting continuous attentions of biomedical and optical communities. SIM inherits the wide-field configuration of optical microscopes by replacing the Köhler illumination with a structured illumination module

[HEDS12] 10:35-11:45 **Collisionless Shock 5** Chair: Andrea Ciardi LERMA - Observatoire de Paris

HEDS12-01 10:35

PeV Cosmic Ray Acceleration in the Supernova Blast Wave: Kineticmagnetohydrodynamic Simulations

Invited

Tsuyoshi Inoue Konan University

Supernova remnants are believed to be the accelerators of cosmic-rays up to PeV. In this work, using a novel method developed by Inoue (2009), we show that cosmic-ray streaming instability mediated acceleration successfully energize cosmic-rays more than PeV at the supernova shock propagating in the dense circum stellar medium.

HEDS12-02 11:00

Particle acceleration by a relativistic shock propagating into an inhomogeneous medium

Kanji Morikawa, Yutaka Ohira, Takumi Ohmura The University of Tokho

Although a relativistic shock cannot accelerate particles efficiently, we found that the interaction between the shock and some upstream density fluctuations can make the downstream turbulent enough to accelerate the particles by the relativistic shock.

HEDS12-03 11:15

Relativistic collisionless shock propagating in an unmagnetized relativistically hot plasma Kazuki Kamiido, Yutaka Ohira

The University of Tokyo We show that the energy dissipation in collisionless shocks in a relativistically hot plasma is much larger than that for nonlelativistic cases. We present Particle-In-Cell simulation results of collisionless shocks in a relativistically hot plasma.

HEDS12-04 11:30

Relativistic particle acceleration in counter propagating Alfvén waves Shogo Isayama¹, Shuichi Matsukiyo¹ Takayoshi Sano²

1Kyushu University, 2Osaka University In our recent study, through 1D simulations, it has been shown that that when the amplitude of the two counter-propagating Alfven waves exceeds critical amplitude any particles irreversibly gain relativistic energy within a short time regardless of their initial energy. In this study, we also investigate the particle acceleration process in 2D Alfven turbulence where the time evolution of parametric instability could be different from that in 1D.

IP <room 414+415=""></room>	LDC <room 301=""></room>	LSC <room 421=""></room>	LSSE <room 316=""></room>
[IP8] 10:30-12:00 Holography 2 Chairs: Xiao Lin Fujian Normal University Takashi Kakue Chiba University		[LSC8] 10:35-12:00 New materials, techniques, and	
,		theory (3) Chair: Hiroki Wadati	
28-01 10:30 Invited olarization multiplexed holograms	Coffee Break 10:30-11:00	University of Hyogo	Coffee Break 10:30-11:00
ecorded on azo copolymer films for ptical information processing oaz Jessie Jackin ¹ , Sumit Kumar Singh ² , enji Kinashi ³ , Naoto Tsutsumi ³ , Wataru Sakai ³ Materials Innovation Laboratory, Kyoto nstitute of Technology, ² Graduate School of icience and Technology, Kyoto Institute of echnology, ³ Faculty of Materials Science and ingineering, Kyoto Institute of Technology We report azo functionalized copolymer film s a hologram recording material for igh-density information recording and etrieval. A polarization-angular multiplexed nethod can successfully record and sconstruct 6 images on the same area of ne film. Similarly, a vector-vortex beam can lso be successfully reconstructed simply by luminating a the hologram with a ollimated laser.		LSC8-01 10:35 Invited Nonthermal melting of charge density wave in 3R-Ta _{1+x} Se ₂ induced by intense terahertz pulse excitation Naotaka Yoshikawa <i>The University of Tokyo</i> We investigated an ultrafast dynamics of charge density wave order induced by intense terahertz pulse excitation in 3R-Ta _{1+x} Se ₂ by the pump-probe spectroscopy, and demonstrated an efficient nonthermal melting of charge density wave.	
	[LDC13] 11:00-12:00	LSC8-02 10:55 Invited	[LSSE13] 11:00-11:40
	Imaging / Lighting 3 Chairs: Muneharu Kuwata <i>Mitsubishi Electric Corp.</i> Norihiro Ohse	High Density Rydberg Gas Produced by Picosecond Laser Pulses Toward Ultrafast Quantum Simulation Takuya Matsubara ¹ , Seiji Sugawa ^{1,2,3} ,	Space Technology 2 Chair: Norihito Saito <i>RIKEN</i>
	Sony Corp.	Vikas Singh Chauhan ¹ , Vineet Bharti ¹ , Arnab Maity ^{1,4} ,	
Nuti-view specular reflections of polygon- ased holograms via bump mapping an Wang ¹ , David Blinder ^{2,3,1} , Tomoyoshi Ito ¹ , omoyoshi Shimobaba ¹ <i>Chiba University, ²Vrije Universiteit Brussel,</i> <i>IMEC</i> <i>Ve</i> propose a new method for multi-view pecular reflection of polygon-based olograms, enabling specular reflections to hange smoothly with the viewing angle. ump mapping is used so that arbitrarily neven terrain can be naturally illuminated vithout increasing the number of triangles.	High-contrast Raman imaging using temporal filtering Terumasa Ito <i>Tokyo University of Agriculture and Technology</i> The signal contrast of coherent Raman microscopy is limited by background signals from tissue components. We compare and discuss the performance of current background-suppression methods, focusing on the temporal filtering response of the detection systems.	Takafumi Tomita ^{1,2} , Sylvain de Léséleuc ^{1,2} , Kenji Ohmori ^{1,2} ¹ Institute for Molecular Science, National Institutes of Natural Sciences, ² SOKENDAI (The Graduate University for Advanced Studies), ³ Department of Basic Science, The University of Tokyo, ⁴ Indian Institute of Science Education and Research Kolkata We generated a high-density Rydberg gas of ultracold ⁸⁷ Rb atoms by ultrafast excitation using an improved picosecond pulse laser system, toward ultrafast quantum simulation of spin-motion system grounded on Rydberg crystal.	Modelling of Software Defined Laser for quantum technologies in space Ho Kwan Chau ¹ , Chris Bridges ¹ , Peter Nisbet-Jones ² ¹ Surrey Space Centre, University of Surrey, Guildford, U.K., ² Twin Paradox Labs, London, U.K. We propose a novel Python-based model of compact laser systems for future space- based quantum devices and finding the optimal back-end solution for low size, weight, power, and cost (SWaP-C) cold ator interferometers and atomic clocks.
P8-03 11:15 Suppression of edge artifacts based on		LSC8-03 11:15 Invited Sum-frequency Excitation of Excitons	
Zernike defocus aberration in depth- nap computer-generated holography		and Phonons in van-der-Waals Semiconductor	
iaosi Hu ¹ , Yusuke Saita ² , Takanori Nomura ² Graduate School of Systems Engineering,		Satoshi Kusaba Yokohama National University	LSSE13-02 11:20
lakayama University, ² Faculty of Systems ngineering, Wakayama University olographic 3D displays with depth-map iodels cause edge artifacts due to inter-layer fifraction. The accommodation mask method sing Zernike defocus aberration is proposed	LDC13-02 11:30 Invited	We demonstrated sum-frequency excitations of optically inactive excitons and phonons in a van-der-Waals semiconductor transition metal dichalcongenide (TMD) by irradiating broadband near- and far-infrared pulses.	Thrust measurement of EUV photoablation Naoki Miyake ¹ , Kodai Nakai ¹ , Koichi Mori ¹ , Nozomi Tanaka ² , James Edward Hernandez ² ' <i>Osaka Metropolitan University, ²Osaka</i> <i>University</i>
o suppress artifacts and enhance realism in ccommodation effects.	All-pulsed two-photon STED microscopy for nanoscale tissue imaging	LSC8-04 11:35 Invited	Space debris removal by laser ablation is a promising method for removing debris
P8-04 11:30	Hirokazu Ishii ^{1,2} , Kohei Otomo ³ , Tomomi Nemoto ^{1,2}	Theoretical proposal for Fourier-	smaller than 1-10 cm. In this study, thrust measurement using EUV light was
thogonal Recording and Reconstruction f Linear Polarization States Via hotorefractive Volume Holography <i>i</i> el Sheen Villacorta Dumaicos ¹ , aphael A. Guerrero ² <i>Philippine Science High School - Caraga</i> <i>egion Campus, ²Ateneo de Manila University</i> <i>i</i> is study investigates the use of lithium obate in volume holography with recording	Texploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, ² National Institute for Physiological Sciences, ² National Institute of Physiological Sciences, ³ Graduate School of Medicine, Juntendo University We developed a two-photon excitation STED microscope utilizing laser-diode-based pulsed light sources and time-gated fluorescence	limited attosecond pulse generation from electrons in solids Shohei Imai ¹ , Atsushi Ono ² ¹ University of Tokyo, ² Tohoku University We theoretically demonstrated attosecond pulse generation in solid materials. This is achieved by synthesizing an optimal electric field waveform of light, based on electron wave packet control via dynamical electron mass sign change.	performed for the first time in the world.
eams having perpendicular polarization rates. Results indicate that diffraction fficiencies are polarization-dependent but o not differ significantly. An existing reoretical framework effectively captures re experimental results of the study.	detection, namely, all-pulsed 2PE-gSTED microscopy. Time-gating effectively eliminated undesired signals from brain tissue, resulting in the spatial resolution of 123.3 ± 7.1 nm for the 2PE-gSTED images, which was 1.4 times higher than that for the non-gated images.	LSC-CL 11:55 Closing Remarks Toshihiko Shimizu Osaka University	Lunch 11:40-13:00

Oral, Friday, 26 April AM OWPT <Room 304> TILA-LIC <Room 315> OMC <Room 418> ----- Coffee Break 10:15-10:45 -----OWPT9-03 10:15 TILA-LIC8-05 10:15 Temperature distribution simulations Scaling Requirements for Eye-Safe Optical Wireless Power Transmission in Cr:LiSAF DFC chip for high power broadband tiny integrated laser in Dominic Andrew Duffy1,3 800-950 nm range Stephen John Sweeney ¹University of Glasgow, ²ZiNIR Ltd. Florent Cassouret¹, Takunori Taira^{1,2} We discuss the challenges and requirements Institute for Molecular Science, ²RIKEN for high power free space OWPT systems SPring-8 center operating at eye-safe wavelengths. Key Thermal distribution calculation on new designed Cr:LiSAF DFC chip shows 4 times factors influencing system configuration and how these constrain the photovoltaic laser lower temperature compared to bulk crystal power converter design are considered. under 100W-diode pumping which could lead to over 40W output power. ----- Coffee Break 10:30-11:00 ---------- Coffee Break 10:30-11:00 -----[OMC13] 10:45-12:00 [OWPT10] 11:00-12:00 [TILA-LIC9] 11:00-12:00 Session 11 Chairs: Min-Kyo Seo Session 10 Laser Systems & ATLA Project - 4 KAISŤ Chair: Kayo Ogawa Chair: Rakesh Bhandari Ryuji Morita Japan Women's Univ. Optoquest Co. Ltd., Saitama, Japan Hokkaido University OWPT10-01 11:00 TILA-LIC9-01 11:00 Invited OMC13-01 10:45 Invited Performance Evaluation of Optically Development of in high energy DPSSL **High-Resolution Afterglow Modulation** Powered High-Power Photo Diodes amplifier technology at the CLF and Using Efficient Persistent Room demonstration of stable, long-term Yuki Gomi, Souya Sugiura, Mizuki Fukuyama, **Temperature Phosphorescence Materials**

Shuzo Hirata

The University of Electro-Communications The afterglow derived from roomtemperature phosphorescence is potentially a challenge for high-resolution imaging applications without relying on surrounding autofluorescence because it enables stronger afterglow brightness compared with common afterglow emitters using charge separation and recombination [1,2,3].

OMC13-02 11:15

Fabrication of double spiral structure using plasmonic-nanoparticleassisted photochemical reaction

Hyo-Yong Ahn, Hiromi Okamoto Institute for Molecular Science

We developed a method to provide a novel double spiral structure using a photochemical reaction based on the interaction of plasmonic Au@Ag cuboid nanoparticles and circularly polarized light. The interaction of the incident laser beam with the achiral nanoparticle produced a spiral shape of the interference pattern which is replicated via photopolymerization process.

OMC13-03 11:30

Triple-channel recording of polarization holography using orthogonal polarization arrays

Xianmiao Xu, Shenghui Ke, Shujun Zheng, Yi Yang, Xiaodi Tan Fuiian Normal University

We present a novel polarization encoding method for high-density optical data storage in volume polarization-sensitive materials. Using accurate orthogonal polarization array codes in a reference-based multiplexing technique, the polarization holograms can be efficiently and independently reconstructed separately by orthogonal polarization array codes

OMC13-04 11:45

Optical force mapping of a single pentacene molecule measured by photoinduced force microscopy (PiFM) Yasuhiro Sugawara, Tatsuya Yamamoto YanJun Li

Osaka University

We demonstrate optical mapping of a single molecule with a spatial resolution of less than 0.6 nm using photoinduced force microscopy, successfully resolving the optical response inside a single molecule.

Kai Murakami, Motoharu Matsuura University of Electro-Communications We present an optically powered high-power photo-diode, which enables to introduce optically powered remote antenna units without electrical power amplifiers. In this study, we evaluate the RF output power of the optically powered high-power photodiode, and show the high quality of converted electrical data signals with the RF output power of more than 10 dBm

OWPT10-02 11:15

Continuous driving of small mobility vehicles with dynamic charging by optical wireless power transmission on a course including non-irradiation sections Yusuke Suda, Mahiro Kawakami,

Tomoyuki Miyamoto Tokyo Institute of Technology Electric vehicles are becoming popular, however there are problems with the power supply related to the battery. The effects of light irradiation section ratio and improvement of light utilization efficiency were investigated numerically and experimentally for a small toy vehicle model.

OWPT10-03 11:30

Improving Efficiency Factors for Laser Power Beaming Tom Nugent, Jr., Jonathon Gort, Drew Cardwell

PowerLight Technologies

We analyze losses in various components of a typical laser-power beaming system, compare them with theoretical limits, and present a path to 30% wall-plug efficiency, along with justification for believing the goal is achievable

OWPT-CL 11:45

Award Ceremony **Closing Remarks** Kensuke Ikeda¹, Masakazu Arai² CRIEPI, ²Univ. of Miyazaki

operation of a DPSSL operating at 10 J, 100 Hz

Mariastefania De Vido¹, Gary Quinn¹, Danielle Clarke¹, Luke McHugh¹, Paul Mason¹, Jacob Spear¹, Jodie Smith¹, Martin Divoky², Jan Pilar², Ondrej Denk², Thomas Butcher¹, Chris Edwards¹, Tomas Mocek², John Collier¹ STFC Rutherford Appleton Laboratory, UK, ²HiLASE Centre, Czech Republic

We summarise recent developments in high energy diode-pumped solid-state laser (DPSSL) technology at the STFC Central Laser Facility. These include the first ever demonstration of long-term, reliable amplification in a kW-class high energy nanosecond pulsed DPSSL at 100 Hz. We then provide an overview of future exploitation of this technology

TILA-LIC9-02 11:30 Coherent stacking 128 ultrashort pulses to tens of mJ from fiber amplifiers

Yun Feng Wu^{1,2}, Bo Wei Yang^{1,3}, Ruo Ao Yang¹, Yan Rong Song², Zhi Gang Zhang¹ ¹Peking University, ²Beijing University of Technology, ³University of Michigan We report a coherent combination system that stackes 128 femtosecond pulses from fiber amplifiers. The stacked pulse energy is &qt;10 mJ and the pulse width is 256 fs. The current combination system has a potential to generate tens of mJ pulses.

TILA-LIC9-03 11:45

0.3 PW/(sr cm²) brightness unstable resonator microchip laser for multipoint ignition

Hwan Hong Lim¹, Takunori Taira^{2,1} ¹Institute for Molecular Science, ²RIKEN SPrina-8 Center

A passively cooled Nd:YAG/Cr4+:YAG microchip laser sets a brightness record of 300 TW/(sr cm²) with 26.4 MW peak power (10.5 mJ, 398 ps) and M^2 of 2.7 at 10 Hz. This enables a 150 mm focusing and 7-point air-breakdown, while 100 Hz operation is demonstrated without active cooling using a DFC-chip

NOTE

	Oral, Friday, 2	26 April PM	
ALPS <room 303=""></room>	ALPS <room 511+512=""></room>	BISC <room 419=""></room>	HEDS <room 311+312=""></room>
			Lunch 11:45-13:15
Lunch 12:00-13:30	[ALPS31] 13:15-14:30	Lunch 12:00-13:30	[HEDS13] 13:15-15:15
	Novel optical devices, materials, structure and applications (2) Chair: Koichi Okamoto Osaka Metropolitan University		Magnetic Reconnection & Particle Chair: Youichi Sakawa Osaka University
	ALPS31-01 13:15 Invited Engineering Photoluminescence with Nanoantennas Shunsuke Murai <i>Kyoto University</i> Light-scattering nano-elements are referred to as nanoantennas due to the ability to harness the light. Nanoantenna phosphors,		HEDS13-01 13:15 Invit Structure of Reverse Shocks and Radiative Cooling Effects in High Energy Density Plasma Experiments S. Merlin ¹ , J. D. Hare ² , G. C. Burdiak ² , J. W. D. Halliday ⁴ , A. Ciardi ⁵ , J. P. Chittenden ¹ , A. J. Crilly ¹ , K. Marrow ¹ , D. R. Russell ⁴ , L. G. Suttl E. R. Tubman ¹ , V. Valenzuela-Villaseca ⁷ , I. W. O. Versité ⁴ , S. V. Lehedayl
[ALPS29] 13:30-15:00 Short wavelength light sources and applications (3) Chair: Keisuke Kaneshima <i>University of Hyogo</i>	i.e., phosphor plates combined with nanoantenna, enable spatial and spectral control over the luminescence from the phosphor. In this study, we visualize the distribution of the photoluminescence from the nanoantenna phosphor into forward, backward, and side directions by using the	[BISC10] 13:30-15:15 Session 10 Chair: Mitsuhiro Morita <i>Kobe University</i>	T. W. O. Varnish ² , S. V. Lebedev ¹ ¹ Blackett Laboratory, Imperial College London, United Kingdom, ² Plasma Science and Fusion Center, Massachusetts Institute of Technology, USA, ³ First Light Fusion Ltd., Yamton, Kidlington, United Kingdom, ⁴ Atomic and Laser Physics Grow University of Oxford, United Kingdom, ⁶ Sorbonne
ALPS29-01 13:30 Ultrafast laser-driven extreme- ultraviolet sources for applications to advanced nanolithography THANH HUNG DINH ¹ , Shinichi Namba ² , Hiroki Yamamoto ¹ , Noboru Hasegawa ¹ , Masahiko Ishino ¹ , Masaharu Nishikino ¹ ¹ National Institutes for Quantum Science and Technology (DST), ² Graduate School of Advanced Science and Engineering, Hiroshima University We develop ultrafast laser-driven EUV sources and attempt to evaluate the response of photoresist materials exposed to intense ultrashort EUV pulses, as a touchstone for the next-generation EUV-FEL lithography.	integrating sphere.	BISC10-0113:30InvitedTime-deterministic cryogenic optical microscopy with on-stage rapid freezingMasahito Yamanaka Osaka University, JapanWe developed a technique to realize rapid freezing of biological samples under optical microscopic observation. Our technique provides spatio-temporal information of sample dynamics to cryofixed samples, allowing detailed observations with high spatial resolution and quantifiability.	Université, Observatoiré de Paris, PSL Research Université, Observatoiré de Paris, PSL Research University, France, ⁶ Technische Universitaet Muenchen, Forschungs-Neutronenquelle Heinz Maier-Leibnitz, Germany, ⁷ Department of Astrophysical Sciences, Princeton University, USJ Accretion shocks, common in many astrophysica systems, can be significantly influenced by radiative cooling effects, resulting in instabilities and turbulence. This study investigates accretion shock experiments at the MAGPIE pulsed power facility using two different approaches. The first approach examines reverse shocks resulting fror the collision of supersonic, magnetized plasma flows produced by an inverse wire array interacti with a planar conducting obstacle. The second approach involves the ablation of solid targets by X-ray radiation from a Z-pinch wire array.
ALPS29-02 13:45 Ptychography Phase Retrieval via Threshold Truncat ion Alternating Direction Method of Multipliers Using High Harmonic Sources Shaobo Fang ^{1,2} , Xianming Wu ^{1,2}	ALPS31-02 13:45 Optical properties and luminescence control of Ag/TiO ₂ stacked metasurfaces using out-of-plane quadrupole resonance TienYang Lo, Shunsuke Murai,		HEDS13-02 13:40 Invit Laser astrophysics experiments for the investigation of plasma heating and acceleration in magnetic reconnection Taichi Morita ¹ , Y. Muramoto ² , Y. Maenosono ² , S. Isayama ¹ , M. Edamoto ³ , M. Hanano ⁴ , Y. Kanesada ² , Y. Kuramitsu ⁵ , S. Matsukiyo ¹ ,
Institute of Physics Chinese Academy of Sciences, ² University of Chinese Academy of Science We introduce a closed-form ADMM algorithm for robust phase retrieval in Ptychography, utilizing a threshold truncation update method for penalty parameter adjustment. Our approach outperforms others, ensuring superior phase retrieval even with a 25% overlap rate.	Katsuhisa Tanaka <i>Kyoto University</i> In this study, we experimentally and numerically elucidated the optical properties of a bilayer metasurface system exhibiting out-of-plane quadrupole resonance characteristics and demonstrated the potential for bilayer metasurfaces system in directional light source applications.		1. Katiesada , r. Voltanilist , Y. Matsukiyu , G. Nakayama', K. Obayashi [®] , K. Oshida', K. Saka J. Shiota [®] , Y. Suzuki ⁴ , T. Takezaki [®] , S. J. Tanaka [®] , K. Tomita [®] , S. Yakura [®] , R. Yamazaki [®] , Y. Sakawa ¹⁰ ¹ Faculty of Engineering Sciences, Kyushu University, ² Interdisciplinary Graduate School or Engineering Sciences, Kyushu University, ⁴ Graduate School of Science, Osaka University, ⁶ Graduate School of Engineering, Osaka University, ⁶ Department of Physical Sciences, Aoyama Gakuin University, ⁷ National Institutes for Fusion Science, Japan, National Institutes for Fusion Science, Japan, National Institutes for Fusion Science, Bracuity of Engineering, University of Toyama, ⁹ Division of Quantum Science and Engineering, Hokkaido University, ¹⁰ Institute of Laser Engineering, Osaka University We report recent results from the magnetic reconnection experiments using high-power las system Gekko-XII at Osaka University. Indicati

Oral Program

linear polarized Gaussian and Laguerre-Gaussian beams on EDS crystallization. ⁻ri, 26 April, PM

Oral, Friday, 26 April PM

TILA-LIC <Room 315>

----- Lunch 12:00-13:30 -----

[TILA-LIC10] 13:30-15:00 Laser Applications Chair: Nicolaie Pavel

National Institute for Laser, Plasma and Radiation Physics - INFLPR, Magurele, Romania

TILA-LIC10-01 13:30 Invited

TILA application in severe environments as a powerful tool for in-situ remote analysis of fuel debris in decommissioning of Fukushima **Daiichi Nuclear Power Station** Ikuo Wakaida1, Hironori Ohba1,

Katsuaki Akaoka', Takahiro Karino¹, Ryuzo Nakanishi², Kan Sakamoto³, Yuji Ikeda⁴, Takunori Taira⁵ ¹Japan Atomic Energy Agency, ²The National Institutes for Quantum Science and

Technology, ³Nippon Nuclear Fuel Development Co., Ltd., ⁴i-Lab., Inc., ⁵Institute for Molecular Science

For the safe and efficient decommissioning of Fukushima Daiichi Nuclear Power Station, development of in-situ remote analysis of nuclear fuel debris under extreme high radiation environment has been indispensable. "TILA" has been developed as a laser built-in cmpact probe of Optical Fiber Coupled Laser Induced Breakdown Spectroscopy and enable ultra-long remote analysis of 100m.

OPIC 2024 · 22-26 April, 2024

NOTE

Oral, Friday, 26 April PM

ALPS <Room 303>

ALPS29-03 14:00 Invite Modelling of laser-driven EUV source

plasmas for nanolithography John Sheil^{1,2}, Jorge Gonzale^{21,2}, Stan de Lange^{1,2}, Oscar Versolato^{1,2} ¹Advanced Research Center for Nanolithography (ARCNL), ²Vrije Universiteit Amsterdam

I will review our recent efforts in modeling laser-driven tin plasmas, specifically the atomic physics of EUV generation, radiationhydrodynamic simulations of these plasmas as well as plasma expansion characterization.

Invited ALPS31-03 14:00 Absorption Enhancement by Lattice

Kerker Effect on Fluorescent Surface Lattice Resonance Joshua T. Y. Tse, Shunsuke Murai, Katsuhisa

ALPS <Room 511+512>

Tanaka Kyoto University

ALPS31-04 14:15

Tadataka Edamura Hamamatsu Photonics K.K.

Absorption enhancement mediated by lattice Kerker effect was described by a modified coupled-mode theory. We discovered the optimal condition for near-perfect absorption as well as maximum in-coupling efficiency for photoluminescence.

Demonstration of a 1.5 µm wavelength

We propose a 1.5 µm wavelength NPN-type

p-dopant Zn diffusion and intervalence band

absorption. The peak output power is 120

mW and the slope efficiency is 56 mW/A.

PCSEL structure to reduce unexpected

NPN-type photonic-crystal surface

emitting laser exceeding 100 mW

Masahiro Hitaka, Kazuyoshi Hirose, Yutaka Takagi, Takahiro Sugiyama, Akio Ito,

BISC <Room 419>

BISC10-02 14:00 Invited Multi-photon Microscopy Enhanced by Manipulation of Excitation Laser Beam and its Application to Cellular Physiology

Tomomi Nemoto^{1,2,3,4}, Kohei Otomo^{1,2,5}, Hirokazu Ishii^{1,2,3}, Motosuke Tsutsumi ¹Exploratory Research Center on Life and Living Systems (ExCELLS), Nat. Inst. Nat. Sci., ²Nat. Ins. Physiol. Sci., Nat. Inst. Nat. Sci. ³Grad, Univ. Adv. Studies (SOKENDAI), ⁴Res Inst. Electro. Sci., Hokkaido Univ., 5 Grad. Sch. Med., Juntendo Univ. Multi-photon excitation fluorescence microscopy is a robust technique for understanding physiological phenomena from the cellular to the tissue level.By taking advantage of novel laser light technologies, we have successfully improved fluorescent signal-to-noise ratio and temporal and spatial resolutions while observing

physiological events in living cells and

animals

HEDS <Room 311+312>

HEDS13-03 14:05 Invited

Experimental Investigation on Magnetic Reconnection in Electron-Magnetized Plasmas with High-Power Lasers

Kentaro Sakai¹. Toseo Moritaka¹. Taichi Morita². Kentaro Tomita³, Takumi Minami Masato Ota1, Shunsuke Egashira4 Youichi Sakawa4, Norimasa Ozaki Ryosuke Kodama⁴, Taichi Takezaki⁵, Ryo Yamazaki⁶, Shuta J. Tanaka⁶, Michel Koenig⁷, Bruno Albertazzi⁷ Paul Mabey⁷, Nigel Woolsey⁸, Shuichi Matsukiyo², Masahiro Hoshino⁹, Yasuhiro Kuramitsu⁴ ¹National Institute for Fusion Science, ²Kyushu University, ³Hokkaido University, ⁴Osaka University, 5 University of Toyama, 6 Aoyama Gakuin University, ⁷École Polytechnique, ⁸University of York, ⁹University of Tokyo We performed a laser experiment on magnetic reconnection in electronmagnetized plasmas. The local velocity and magnetic field measurements show a diverging electron outflow and whistler waves, respectively, associated with electron dynamics in magnetic reconnection.

ALPS29-04 14:30

Simulation of Tin Droplet Plasma Ablated by Multi-angle Pulsed Lasers Qin Sun, Si Liu, Yanfei Hu, Huiming Qi,

Xinbing Wang, Duluo Zuo Huazhong University of Science and Technology

Based on the FLASH code, we design a numerical model to investigate the characteristics of plasma produced by pulsed lasers illuminating a tin droplet from multiple angles at the same time.

BISC10-03 14:30

Diagonal deconvolution for diagonallyscanned light-sheet microscopy

Tom Vettenburg, Laurynas Valantinas University of Dundee

Airy beam light-sheet microscopy enables non-invasive imaging of large specimens with subcellular resolution. Samples larger than the working distance could be imaged by scanning them at 45° to the detection axis, though this hampers image reconstruction. We demonstrate a scalable, memory-efficient deconvolution algorithm for diagonal-scanned fluorescence light-sheet microscopy.

HEDS13-04 14:30

Repetitive Generation of Laser-driven Quasi-monoenergetic Multi-MeV Protons from Hydrogen Clusters

Masato Kanasaki¹, Takafumi Asai^{1,8}, Chihiro Inoue^{1,8}, Seiichiro Mochizuki¹, Takumi Minami^{2,8}, Kentaro Sakai², Kousuke Himeno², Tomoya Taguchi², Kazumasa Oda², Souichiro Suzuki², Yuki Abe², Hideki Kohri³, Atsushi Tokiyasu⁴, Shuta Tanaka⁵, Tatiana Pikuz⁶, Satoshi Kodaira⁷, Akira Kon⁸, Kai Huang⁸, Nobuhiko Nakanii⁸, Kotaro Kondo⁸, Masaki Kando⁸, Yuji Mashiba⁸, Yasuhiro Miyasaka⁸, Koichi Ogura⁸, Akito Sagisaka⁸, Hiromitsu Kiriyama⁸, Tomoya Yamauchi¹, Yasuhiro Kuramitsu², Yuji Fukuda⁸

¹Graduate School of Maritime Sciences, Kobe University, ²Graduate school of Engineering, Osaka University, ³Research Center for Nuclear Physics (RCNP), Osaka University, ⁴Research Center for Electron Photon Science (ELPH), Tohoku University, ⁶College of Science and Engineering, Aoyama Gakuin University, ⁶Institute for Open and Transdisciplinary Research Initiatives, Osaka University, ⁷National Institutes for Quantum Science and Technology (QST), ⁶Kansai Photon Science Institute (KPSI), National Institutes for Quantum Science and Technology (QST)

In the laser-driven ion accelaration experiments using hydrogen cluster targets, we have confirmed the conditions for the acceleration of quasi-monoenergetic a few MeV protons via laser-cluster interactions.

	Oral, Friday,	26 April PM	
IP <room 414+415=""></room>	LDC <room 301=""></room>	LSSE <room 316=""></room>	OMC <room 418=""></room>
	Coffee Break 14:00-14:15	LSSE14-03 14:00 Invited	OMC14-03 14:00
		Evaluation of damage level of concrete delamination or internal defects using wave energy of impactelastic waves observed by the laser remote sensing system Satoshi Tomoto ¹ , Hikaru Nakamura ³ , Hikaru Matsunga ¹ , Noboru Hasegawa ² , Yuki Yamada ¹ , Tateyuki Yamane ¹ 'CTI Engineering Co., Ltd., ² National Institutes for Quantum Science and Technology, ³ Nagoya	Optical trapping of flow tracers for the characterization of thermo-osmotic slip flows around charged microparticles Tetsuro Tsuji, Satoshi Mei, Satoshi Taguchi <i>Kyoto University</i> Tracer nanoparticles for the visualization of microflow are sometimes scarce in a test section, especially when the test section is small, e.g., a close vicinity of a solid surface.
	[LDC15] 14:15-15:00 Laser Applications for Moving Platforms Chair: Junichi Kinoshita <i>Osaka Univ.</i>	Univercity The purpose of this study is to evaluate the damage level of concrete delamination or internal defects using a concrete surface vibration waveform of the laser hammering system (LHS). By referring the laboratory test data, it was succeeded to evaluate the	In this study, the optical trapping of the tracers is applied to facilitate the visualization of thermo-osmotic slip flow in the vicinity of microparticles' surface, by enforcing the tracers to stay close to the surface of the microparticles.
IP9-03 14:15	LDC15-01 14:15 Invited	damage level by the method of evaluating attenuation graphs using a normalized wave	OMC14-04 14:15
Fluorescence Optical Sectioning Imaging System based on Moiré Metalens Yu-Hsin Chia ^{1,2} , Chen Ming Tsai ² , Sunil Vyas ² , Yi-You Huan ^{1,2,5} , Yuan Luo ^{2,3,4} , Min-Xuan Wang ^{2,3} 'Department of Biomedical Engineering, National Taiwan University, ² Institute of Medical Device and Imaging, National Taiwan University, ³ Molecular Imaging Center, National Taiwan University, ⁴ YongLin Institute of Health, National Taiwan University, ⁶ Department of Biomedical Engineering, National Taiwan University Hospital We present a Moiré metalens with long axial	FMCW LiDAR system analysis - modeling & experiment Christoph Peter Josef Schmid, Simon Lankes, Reiner Windisch, Dominik Peller, Michael Koller, Georg Rossbach <i>ams-OSRAM International GmbH</i> FMCW-based ranging has been introduced as a disruptive new technology for automotive LiDAR. The coherent detection scheme, however, imposes strict constraints on the system design, rising the need for a quantitative system analysis.	energy curve.	Optical vortex induced forward transfer enables the high-definition 2-dimensional direct print of metallic microdots Sayaka Kai ¹ , Rong Wei ¹ , Haruki Kawaguchi ¹ , Kanta Takahashi ¹ , Keisaku Yamane ² , Ken-ichi Yuyama ³ , Satoyuki Kawano ⁴ , Katsuhiko Miyamoto ¹ , Takashige Omatsu ¹ ¹ Chiba University, ² Hokkaido University, ³ Osaka Metropolitan University, ⁴ Osaka University OV-LIFT allows direct printing of precise metallic microdots (diameter -8 µm, positional error <7 µm), surpassing traditional ink-jet printing.

W scanning imaging system, which utilizes the telecentric design to obtain constant magnification images with long axial scanning range. The Moiré metalens consists of two complementary phase metasurfaces. Furthermore, the imaging system incorporate with structured illumination to capture the HiLo optical sectioning images.

IP9-04 14:30

Position and Posture Estimation of Moving Object with a ColorGradient Marker by Using a Depth Camera Shouta Hasui¹, Daisuke Barada^{1,2}

¹Graduate School of Regional Development and Creativity, Utsunomiya University, ²Center for Optical Research and Education (CORE), Utsunomiya University

In this study, the position and posture of a moving object with a color-gradient marker was estimated by using a depth camera. Position is measured by triangulation method. The depth image was separated by multiple regions and the tilt of each region was obtained by plane fitting. The shape of marker was compensated by considering the tilt. The in-plane direction was estimated from the colorgradient direction although the image of moving marker pattern was blurred

LSSE14-04 14:30

Laser Shock Wave Conduit in

Nondestructive Testing Kento Kuwata¹, Masaharu Nishikino², Noboru Hasegawa², Naoki Hosoya¹ ¹Shibaura Institute of Technology, ²Kansai Institute for Photon Science, National Institutes for Quantum Science and Technology

The laser shock wave have the potential to noise and ablate target in vibration tests. This study controlled the non-destructive and non-contact excitation by laser shock wave using a conduit system and detected concrete defect.

OMC14-05 14:30

High-speed AFM for direct observation of nanoscale deformation process of photo-manipulated azo-polymer

Keishi Yang¹, Feng-Yueh Chan², Yasushi Inouye^{1,3}, Prabhat Verma¹, Takayuki Uchihashi^{2,4}, Hidekazu Ishitobi^{1,3}, Takayuki Umakoshi^{1,5}

¹Dept. of Applid Physics, Osaka University, ²Dept. of Physics, Nagoya University, ³Graduate School of Frontier Biosciences, Osaka University, ⁴Exploratory Research Center on Life and Living Systems, ⁵Institute of Advanced Co-Creation Studies, Osaka University

Azo-polymer thin films exhibit a unique surface morphology under light irradiation due to the photoisomerization reaction. The morphology can be manipulated by controlling light properties such as polarization. Here, we demonstrate in-situ direct observation of the formation of the surface morphology on the azo-polymer film using high-speed atomic force microscopy. The change in surface morphology was precisely investigated in real time at the nanoscale.

Oral, Friday, 26 April PM

TILA-LIC <Room 315>

TILA-LIC10-02 14:00

Femtosecond Laser-Shock Processing: Fundamentals and Applications Tomokazu Sano

Osaka University

Femtosecond laser-shock processing or Dry laser peening (DLP) enables improving fatigue performance of metallic materials using femtosecond laser pulses without a sacrificial overlay in air. This process has a potential to be applied to variety of industrial fields such as automotive, rail, aircraft, and space industries.

TILA-LIC10-03 14:15 Laser peening application of TILA for service life extension of metallic components

Yuji Sano^{1,2}

¹Institute for Molecular Science, National Institutes of Natural Sciences, ²SANKEN, Osaka University

A tiny integrated laser (TILA) has been incorporated into a laser peening system to extend the service life of metallic components. By taking full advantage of the TILA's short pulse duration, it was confirmed that fatigue life was dramatically increased while minimizing harmful thermal effects on the surface.

TILA-LIC10-04 14:30

Gold nanoparticle synthesis using a microchip laser system through pulsed laser ablation in aqueous and organic solution Yumi Yakiyama^{1,2}.

Barana Sandakelum Hettiarachchi¹, Yusuke Takaoka³, Yuta Uetake^{1,2}, Hwan Hong Lim⁴, Takunori Taira^{4,5}, Mihoko Maruyama⁶, Yusuke Mori⁶, Hiroshi Y Yoshikawa³, Hidehiro Sakurai^{1,2} ¹Division of Applied Chemistry, Graduate

¹Division of Applied Chemistry, Graduate School of Engineering, Osaka University, ²Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, ³Division of Applied Physics, Graduate School of Engineering, Osaka University, ⁴Division of Research Innovation and Collaboration, Institute for Molecular Science, ⁵Laser-Driven Electron-Acceleration Technology Group, RIKEN SPring-8 Center, ⁶Division of Electrical, Electronic and Infocommunications Engineering, Graduate School of Engineering, Osaka University

Microchip laser (MCL) was applied to PLAL of Au in both aqueous and organic media. Comprehensive investigation revealed that the resulting Au nanoparticles (NPs) sizes were almost fixed, while their yields were significantly different depending on the physical properties of the outer media.

NOTE

ALPS <Room 303>

ALPS29-05 14:45

Thomson scattering diagnostics of EUV source plasmas and plasma disturbances by probing lasers Kentaro Tomita, Yiming Pan

Hokkaido University

We have performed Thomson scattering measurements for EUV sources produced with 1.064 μm or 10.6 μm wavelength lasers. For further study, the possibility of laser-perturbation of plasmas by the probing lasers was investigated.

[ALPS-CL] 15:15-15:30 Closing Remarks

Chair: Hitoki Yoneda Institute for Laser Science, University of Electro-Communications

Oral, Friday, 26 April PM

BISC <Room 419>

BISC10-04 14:45

Volume Hologram-based Airy Lightsheet Microscopy

Hung-Chuan Hsu¹, Sunil Vyas², Kuang-Yuh Huang¹, Hsien-Shun Liao¹, Yuan Luo^{2,3,4,5} ¹Department of Mechanical Engineering, National Taiwan University, ²Institute of Medical Devices

and Imaging System, National Taiwan University, 3ºongLin Institute of Health, National Taiwan University, ⁴Department of Biomedical Engineering, National Taiwan University, ⁵Graduate School of Advanced Technology, National Taiwan University

Light-sheet fluorescence microscopy (LSFM) offers rapid optical sectioning with low photobleaching and phototoxicity. Combining LSFM with Airy beams via volume holograms enhances the field of view and image quality, presenting advantages like expanded field of view, increased penetration depth, and improved imaging quality in measuring large biological samples.

BISC10-05 15:00

Metalens-based Light Sheet Fluorescence Microscope Bo-Wei Huang¹, Hung-Chuan Hsu¹,

Cheng Hung Chu², Ming Lun Tseng³, Sunil Vyas⁴ Ting-Yu Hsieh⁴, Kuang-Yuh Huang^{1,5}, Din Ping Tsai^{6,7,8}, Yuan Luo^{2,4,9,10}

¹Department of Mechanical Engineering, National Taiwan University, ²Yong-Lin Institute of Health, National Taiwan University, ³Instituteof Electronics, National Yang Ming ChiaoTung University, ⁴Institute of Medical Devices and Imaging System, National Taiwan University, ⁵Graduate School of Advanced Technology, National Taiwan University, ⁶Department of Electrical Engineering, City University of Hong Kong, ⁷Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, ⁸The State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, ⁹Institute of Biomedical Engineering, National Taiwan University, ¹⁹Program for Precision Health and Intelligent Medicine, National Taiwan University

In this work, a metalens-based Light sheet fluorescence microscopy (LSFM) is present. With the benefits of nanoscale dimensions of metalens, the complexity of the conventional LSFM system can be significantly reduced.

----- Coffee Break 15:15-15:30 -----

[BISC11] 15:30-17:00 Session 11 Chair: Masaki Hisaka Osaka Electro-Communication University

BISC11-01 15:30

Mid-infrared photothermal quantitative phase microscopy for label-free live-cell imaging

Invited

Takuro Ideguchi The University of Tokyo

We have developed mid-infrared photothermal quantitative phase imaging (MIP-QPI) techniques, demonstrating their capability for high-speed and high-resolution live-cell microscopic measurements. Our systems significantly advance mid-infrared imaging methodologies.

HEDS <Room 311+312>

HEDS13-05 14:45

Super-collimated mono-energetic thermal spin-polarized neutron generator

Yasunobu Arikawa¹, Ryuya Yamada¹, Toru Sato², Lan Zechen¹, Wei Tianyun¹, Yuta Tatsumi¹, Alessio Morace¹, Akifumi Yogo¹, Takehito Hayakawa³, Shinsuke Fujioka¹, Jun Yamasaki⁴, Kazuhisa Sato⁴, Tetsuya Yasuda⁴, Ryosuke Kodama¹ ¹Institute of Laser Engineering, Osaka University, ²Research Center for Nuclear Science, Osaka University, ³National Institutes for Quantum Science and Technology, ⁴Research Center for Ultra-High Voltage Electron Microscopy, Osaka University

We propose a new concept of supercollimated mono energetic thermal neutron generator. The scheme can be applied to many HEDS experiments.

HEDS13-06 15:00

First demonstration of thermal neutron deflectometry by a laser driven intense magnetic field

Ryuya Yamada¹, Yasunobu Arikawa¹, Zhechen Lan¹, Tianyun Wei¹, Yuta Tatsumi¹, Yile Nan¹, Alessio Morace¹, Akifumi Yogo¹, Takehito Hayakawa², Jun Yamasaki³, Kazuhisa Sato³, Tetsuya Yasuda³, Shinsuke Fujioka¹, Ryosuke Kodama¹ ¹Institute of Laser Engineering, Osaka University, ²National Institutes for Quantum Science and Technology, ³Research Center for Ultra-High Voltage Electron Microscopy Osaka University

Thermal neutrons are directly generated via deuterium photodisintegration reaction by using LFEX. A clear beam splitting by the magnetic field are successfully observed which can probe magnetic field in the high energy density plasma.

----- Coffee Break 15:15-15:35 -----

[HEDS14] 15:35-17:00 High Energy Density Physics Chair: Yasuhiko Sentoku Osaka University

HEDS14-01 15:35 Generation of Ultrahigh Magnetic

Fields by Microtube to Accelerate Charged Particles

Masakatsu Murakami, Sota Maruyama, Diya Pan *Osaka University*

We propose a new scheme to generate ultrahigh magnetic fields - Micro-Toroidal (MT), which has a toroidal structure. Using the resultant magnetic fields generated in 100 fs, strong electric fields are generated, which can then be used for charged particle accelerations.

Oral, Friday, 26 April PM				
LDC <room 301=""></room>	LSSE <room 316=""></room>	OMC <room 418=""></room>		
LDC15-02 14:45 Temporal Domain Analysis of Optical Signal from Projectors Takashi Ebara', Hiroshi Murata' ² , Junichi Kinoshita', Kazuhisa Yamamoto ² ¹ <i>Mie University,</i> ² <i>Osaka University</i> Optical signals from commercially available projectors were measured using a high-speed photodiode and real-time oscilloscope. Distinctive temporal patterns were observed in the measured signals, which are to accord with the display types projectors.	9 LSSE-CL 14:50 Closing Remarks	OMC14-06 14:45 Manoparticle assembly dynamics Itasunori Kishimoto', Yasushi Tanimoto', Kyouko Masul', Chie Hosokawa ² , Kentaro Doi' ¹ Toyohashi University of Technology, ² Osaka Metropolitan University In this study, focusing on nanostructures formed by Laguerre-Gaussian beam irradiation, we investigated the assembly dynamics of nanoparticles (NPs) as a model to understand the formation process of chiral nanostructures. Analyzing the fluorescence intensity and areas at the laser fourged spot, we evaluated the assembled structure of NPs. Furthermore, particle tracking analysis for NPs attracted to the focal spot from the outside was performed.		

----- Coffee Break 15:00-15:30 -----

----- Coffee Break 15:00-15:30 -----

[LDC16] 15:30-16:20

Post-Deadline Papers Chairs: Tetsuya Yagi Nichia Corporation Sunao Kurimura National Inst. for Materials Science

LDC16-01 15:30

3D Position Measurement by Deep-Learning-Assisted Single-Pixel Imaging for Gesture Recognition in Consideration of Privacy Hiroki Takatsuka, Shiro Suyama,

Hirotsugu Yamamoto Utsunomiya University

This paper proposes a calculation method that 3D position measurement in single-pixel imaging with a single detector. By shifting the modulated illumination pattern, the 3D position is calculated by changing center-ofgravity position of the gesture in the reconstructed image by single-pixel imaging.

LDC16-02 15:40

Hollow Face Illusion Evoked by the Aerial 3D Image of Face-Like Characters Projected on a Spheroid Takumi Watanabe, Hiroki Takatsuka, Shiro Suyama, Hirotsugu Yamamoto *Utsunomiya University*

We confirmed that the aerial image of a face-like characters projected onto a spheroid evokes hollow face illusion even at binocular vision. [OMC15] 15:30-17:05 Session 13 Chair: Takashige Omatsu *Chiba University*

OMC15-01 15:30

Single droplet formation with a focused near-infrared laser beam in the temperature responsive ionic liquid

Ken-ichi Yuyama, Maho Tanaka, Yasuyuki Tsuboi

Osaka Metropolitan University

We demonstrate single droplet formation in a thermo-responsive ionic liquid/water mixture by optical tweezers with a focused near-infrared laser beam. In optical tweezing at room temperature, nano-clusters are prepared due to local laser heating and trapped at focal spot to form a droplet. The current approach provides a new opportunity to concentrate molecular ions at a specific position.

Oral, Friday, 26 April PM

TILA-LIC <Room 315>

TILA-LIC10-05 14:45

Development of Dynamic Laser Ultrasonic System Mounted on Robot Arm Using Microchip Laser

Kazufumi Nomura, Norimitsu Okuyama, Takeru Inoue, Tomokazu Sano Osaka University

The laser ultrasonic method enables non-contact ultrasonic detection. The dynamic laser ultrasonic system on a robot arm by using a compact microchip laser as the ultrasonic generation source was developed. The artificial back surface slit was measured and its detectability performance as a dynamic robot UT system was verified.

----- Coffee Break 15:00-15:30 -----

[TILA-LIC11] 15:30-17:00 Laser Systems & ALTA Project - 5 Chair: Xavier Mateos

University Rovira i Virgili, Spain

TILA-LIC11-01 15:30 Invited

High power mode-locked thin-disk laser oscillator

Jinwei Zhang, Heyan Liu, Hongshan Chen Huazhong University of Science & Technology, China

We report 100-W thin-disk laser oscillators with both standing-wave cavity and ring-cavity configurations. The pulse durations are both less than 300 fs. These laser sources have potential applications in many areas.

TILA-LIC11-02 16:00

Two wavelength oscillation for THz generationbased on microchip laser architecture

Hideho Odaka^{1,2}, Arvydas Kausas^{1,2}, Takunori Taira^{1,2}

¹*RIKEN*, ²*Institute for Molecular Science* DFG THz generation is power scalable method. Microchip laser can oscillate two wavelengths simultaneously for DFG. Experimental results of end-pumped MCL with a bonded microchip of two laser media will be reported.

TILA-LIC11-03 16:15

200-mJ Compact Deep-UV Laser System Using DFC-Power Chip and Microchip Laser

Kenichi Hirosawa¹, Junia Nomura¹, Mio Nishida¹, Nobuo Ohata¹, Arvydas Kausas^{2,3}, Vincent Yahia^{3,2}, Takunori Taira^{2,3} ¹Mitsubishi Electric Corporation, ²RIKEN,

³Institute for Molecular Science We will report a compact deep-UV laser system designed on a breadboard scale,

which generates 2 J laser pulses at 1064 nm and converts to 266 nm with 206 mJ and 580 ps pulse duration.

TILA-LIC-CL 16:30

Closing Remarks Takunori Taira *RIKEN SPring-8 Center*

NOTE

Oral, Friday, 26 April PM

BISC <Room 419>

HEDS <Room 311+312>

HEDS14-02 15:50

Control of multiscale expansion/ relaxation dynamics of microstructured designed targets irradiated with a high-intensity laser Ryutaro Matsul^{1,2}, Naoto Hayashi¹, Katsuya Kondo¹, Kazunari Matsuda³, Kazuhiro Fukami⁴, Hiroshi Sakaguchi³, Shinichiro Masuno⁵, Masaki Hashida^{5,6}, Shuji

BISC11-02 16:00

Au-incorporated semiconductor SERS substrate for highly sensitive molecular sensing

Yu Hsuan Wu, Ling Jyue Chen, Ting Yu Zheng, Chih Chia Huang National Cheng Kung University, Taiwan Semiconductor-metal synergy enhances SERS, offering cost-effective, self-cleaning substrates for high-sensitivity, rapid, and reusable detection in food safety, chemical

BISC11-03 16:15

Reusable sensor for glucose concentration measurement with enzymatic no-core fiber

sensing, and biomedical analysis.

Cheng Chih Hsu Hsu¹, Shih-Han Hung¹, Chen-Ming Tsai¹, Cheng-Ling Lee¹, Chyan-Chyi Wu², Ching-Liang Dai³ ¹National United University, ²Tamkang University, ³National Chung Hsing University In this study, we developed a reusable glucose fiber sensor to measure the phase difference produced by the chemical reaction between glucose and glucose oxidase (GOX). The best resolution of the proposed method is better than 1 mg/dl.

BISC11-04 16:30

Proposal of One-shot Type Midinfrared Passive Spectroscopic Imager

Ruka Kobayashi, Daichi Anabuki, Hibiki Yano, Wei Qi, Hiroshi Kanasaki, Kenji Wada,

Akiko Nishimura, Akira Nishiyama, Ichiro Ishimaru

Kagawa University

We proposed the one-shot type mid-infrared passive spectroscopic imager. The pea-sized apparatus, whose lens diameter was 6mm and optical axis length was less than 15mm, will be built in smartwatches for noninvasive blood glucose sensors.

BISC11-05 16:45

Broadband (3–20 µm) Mid-infrared Passive Spectroscopic Imaging for Gas Measurements using a Solar Background

Hibiki Yano¹, Wei Qi¹, Hiroshi Kanasaki², Kenji Wada³, Akira Nishiyama³, Ichiro Ishimaru¹ ¹Faculty of Engineering and Design, Kagawa University, ²Innovation Design Institute, ³Faculty of Medicine, Kagawa University

Our passive spectroscopic imager can be constructed from wavelength-independent reflective optics using free-form mirrors, and we constructed a broadband (3–20 µm) passive spectroscopic imager using a microbolometer array sensor as a detector. In this report, we evaluate the shortwavelength region of the broadband passive spectroscopic imager and the detection of carbon monoxide gas, which is toxic. Sakabe^{2.5}, Shigeki Tokita⁵, Yasuaki Kishimoto^{1,2.3} ¹Graduate School of Energy Science, Kyoto University, ?Non-linear/ Non-equilibrium Plasma Unit (NPU), Kyoto University, ³Institute of Advanced Energy (IAE), Kyoto University, ⁶Institute for Chemical Research (ICR), Kyoto University, ⁶Research Institute of Science and Technology (RIST), Tokai University In this study, we developed a silicon rod assembly with a high aspect ratio and performed a series of experiments concerning an interaction between a high-intensity laser and silicon rods/ CNT usina a T⁶ laser at ICR, Kyoto University.

HEDS14-03 16:05

Modelling of the non-Maxwellian response of DT plasmas to alpha particle transport in ICF hotspot Bao Du

Institute of Applied Physics and Computational Mathematics

Modelling of the non-Maxwellian response of DT plasmas to alpha particle transport in ICF hotspot.

HEDS14-04 16:20

Analysis of the generation of relativistic electron-flux in long-timescale interactions with non-relativistic lasers Yuji Takagi, Natsumi Iwata, Yasuhiko Sentoku Osaka University

We have discovered the generation of fast electrons with energies of 100s of keV in laser-plasma interactions with laser intensities of about 10¹⁵ W/cm² and sub-nanosecond interaction time. We report the details of the generation and acceleration mechanism.

HEDS14-05 16:35

Particle acceleration and plasma heating in magnetized plasmas by large-amplitude standing whistler waves

Takayoshi Sano¹, Shogo Isayama², Shuichi Matsukiyo², Kaoru Sugimoto³, Yasuhiko Sentoku¹ 'Osaka University, ²Kyushu University, ³Kyoto University

Laser-plasma interaction in a strong magnetic field has attractive properties regarding particle acceleration and plasma heating. We are focusing on the role of a standing wave created by counterpropagating circularly polarized whistler waves.

HEDS-CL 16:50

Closing Remarks

Takayoshi Sano Osaka University

Oral, Friday, 26 April PM

LDC <Room 301>

LDC16-03 15:50

Imaging Distance Equation of Aquatic Image Derived by Paraxial Approximation Ryosuke Ichikawa, Hiroki Takatsuka,

Toru Iwane, Shiro Suyama, Hirotsugu Yamamoto Utsunomiya University We derive the imaging distance equation for aquatic image including refractive-index boundaries by the paraxial approximation and clarify its reliability within 6%.

LDC16-04 16:00

Proposal for a Compact Scrolling Aerial Display with Visually Interpolated Pixel Gaps by Striped Retro-reflector and Analysis of Viewing Angle

Tasaki Daichi¹, Akinori Tsuji², Toyotaro Tokimoto^{1,3}, Shiro Suyama¹, Hirotsugu Yamamoto¹ ¹Utsunomiya University, ²Tokushima University,

³XAiX, LLC

We propose the compact scrolling aerial display using striped retro-reflector in front of the light source, and image scrolling can enable pixel interpolation perception by subjective super-resolution, resulting in natural aerial images. We also derive viewing angle formulation by using structure parameters, such as pixel gap to solve the problem of the narrow viewing angle by the striped retro-reflector mounted in front of the light source.

LDC16-05 16:10

Face Rotation Perception due to observer movement only by Flat Illustrations of Face-like Parts with Inverted Concave Depth Positions in Arc 3D Display

Kensuke Tamano, Shiro Suyama, Hirotsugu Yamamoto *Utsunomiya University*

We clarified that flat illustrations of face-like parts is perceived to rotate due to horizontal observation movement by changing these depth positions as inverted concave depths in Arc 3D display. Although the flat illustrations of the face-like image with inverted concave depth position have no 3D features like real face or mask, the face rotation can be perceived by observer movement.

[LDC-CL] 16:20-16:35 Closing Remarks Chair: Tetsuya Yagi Nichia Corporation

OMC15-02 16:00

Microstructure formation by twophoton polymerization reaction using a focused femtosecond optical vortex Yoshihisa Matsumoto, Kyoko Masui, Chie Hosokawa Osaka Metropolitan University We demonstrate the fabrication of

microstructures using the two-photon polymerization reaction of photocurable resins with a femtosecond optical vortex to clarify the transfer mechanism of orbital angular momentum of the optical vortex to materials.

OMC15-03 16:15

Manipulation of membrane molecules in the lipid bilayer by optical trapping Yasushi Tanimoto, Shunya Moriyama, Kyoko Masui, Chie Hosokawa Osaka Metropolitan University We study the diffusion properties of membrane molecules in an optical trap using artificial membranes to elucidate the optical trapping dynamics of cell surface molecules, which is useful for biological membrane research.

OMC15-04 16:30

Experimental and theoretical approaches for observing the interaction between biomolecules and optical vortex in deep-ultraviolet region Koichi Matsuo^{1,2,3}, Hideki Kawaguchi⁴, Kenta Kuroda^{2,3}, Ryota Imaura²,

Kenta Kuroda^{2,3}, Ryota Imaura², Satosi Hashimoto², Yu Nishihara², Hiroshi Ota⁵, Masahiro Katoh^{1,2,5}

¹Synchrotron Radiation Center, Hiroshima University, ²Graduate School of Advanced Science and Engineering, Hiroshima University, ³International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM2), Hiroshima University, ⁴Faculty of Science and Engineering, Muroran Institute of Technology, ⁵Institute for Molecular Science

We constructed the deep-ultraviolet experimental systems for observing the interaction between optical vortex and biomolecules using synchrotron radiation and laser, and theoretically verified the existence of the interactions using a method of moments simulation.

OMC15-05 16:45

Complex amplitude signal detection method based on deep learning for holographic data storage

Jianying Hao¹, Xiaoqing Zheng², Xiao Lin², Soki Hirayama¹, Ryushi Fujimura³, Xiaodi Tan², Tsutomu Shimura¹

¹The University of Tokyo, ²Fujian Normal University, ³Utsunomiya University

We propose a simple implementation of a complex-amplitude encoded HDS system and employs deep learning to realize multi-modulated signal detection. The complex amplitude signal can be retrieved from only one diffraction intensity image. The decoding of the 16-level complex amplitude has been experimentally validated, proving the feasibility of the proposed method.

OMC-CL 17:00

Closing Remarks Takashige Omatsu *Chiba University*

OMC <Room 418>

Poster Session < Exhibition Hall A>

Wednesday, 24 April

ALPSp1 10:30-12:00

ALPSp1-01

Investigations on offset spectral filtering in Yb-doped Mamyshev oscillator

Feihong Qiao, Zhiguo Lv Inner Mongolia University

We research the influence of offset spectra filter on the laser parameter in an MO and then obtain ultrashort pulse generation with an average power of 2.2W and 49 fs pulse duration

ALPSp1-02

In-situ monitoring system during high laser cutting

Kaede Takeuchi, Keiichiro Toyoshima, Yurina Michine, Hitoki Yoneda

The University of Electro-Communications We have developed an in-situ monitoring system for adaptive laser machining processes, which includes several diagnostic techniques: scattering light diagnostics, emission spectroscopy, image analysis at the cutting cross-section, and dark-field imaging of gas and flare at the interaction area

ALPSp1-03

Wavefront collection system for high-aspect-ratio nanometer hole drilling

Kanki Yoshida², Kyosuke Soma² Yurina Michine^{1,2}, Hitoki Yoneda^{1,2} ¹Institute for Laser Science, ²University of Electro-Communications

It is effective to create very high aspect ratio nanometer hole with ultra-short pulse laser. By using careful tuning of wavefront in time and space, we achieve over 100micron depth hole of 180nm hole diameter with two micro Joule pulse energy.

ALPSp1-04

Development of 7-pass Fe:ZnSe amplifier seeded by KTA-based OPA at 3.9 um

Daiki Okazaki¹, Tsuneto Kanai¹, Linpeng Yu², Ryo Yasuhara², Shigeki Tokita¹ ¹Institute for Chemical Research, Kyoto

University, ²National Institute for Fusion Science We develop a 3.9-micron Fe:ZnSe chirped

pulse 7-pass amplifier seeded by a three-stage KTA-based optical parametric amplifier, achieving single-pass gain of 10. The pulse energy finally reaches to 45 uJ via the seven-pass amplification.

ALPSp1-05

High-energy four-pulse passive coherent combining based on a Ti:sapphire bulk amplifier

Shigeki Oshima¹, Jin Akai^{1,3}, Yuhei Ueno^{1,3}, Hajime Sasao², Yasuhiro Miyasaka³, Masayuki Suzuki¹, Hiroyuki Toda^{1,3}, Hiromitsu Kiriyama^{1,3}

¹Doshisha University, ²Naka Fusion Institute (NFI), National Institutes for Quantum Science and Technology (QST), ³Kansai Institute for Photon Science (KPSI), National Institutes for Quantum Science and Technology (QST)

A pulsed energy of 25 mJ from passive four amplified broadband pulse combining using Ti:sapphire bulk amplifier is demonstrated. This result is the highest pulse energy ever reported using passive coherent combining.

ALPSp1-06

Detection of laser-induced damage onset by the vibration Ryoichi Akiyosi¹, Katsuhiro Mikami¹

Yasuhiro Miyasaka² ¹kindai univ., ²Kansai Institute for Photon Science (KPSI), National Institutes for Quantum Science and Technology (QST) Quantitative, real-time laser-induced

damage detection was demonstrated by occurred vibration with accuracy equivalent to microscopic evaluation. In addition, it was clarified that the variation of the vibrational spectra indicated the damage location.

ALPSp1-07

Development of Diagnostics for Laser-Plasma Interaction with Imaging and Spectroscopy of Scattered Intense Laser

Kentaro Sakai¹, Kosuke Himeno², Shuta J. Tanala³, Tatiana Pikuz² Takafumi Asai⁴, Yuki Abe², Takumi Minami², Kazumasa Oda², Soichiro Suzuki² Fuka Nikaido², Kiyochika Kuramoto², Toshiharu Yasui², Hideki Kohri², Masato Kanasaki⁴, Kenji Kaji⁴, Hiromitsu Kiriyama⁵, Akira Kon⁵, Kotaro Kondo⁵, Nobuhiko Nakanii⁵, Wei-Yen Woon⁶, Che-Men Chu⁶ Kuan-Ting Wu⁶, Chun-Sung Jao⁷ Yao-Li Liu7, Shogo Isayama8 Atsushi O. Tokiyasu⁹, Harihara Sudhan Kumar⁹, Kentaro Tomita¹⁰, Yuji Fukuda⁵, Yasuhiro Kuramitsu² ¹National Institute for Fusion Science, ²Osaka University, ³Aoyama Gakuin University, ⁴Kobe University, ⁵National Institutes for Quantum Science and Technology, ⁶National Central University, 7National Cheng Kung University, ⁸Kyushu University, ⁹Tohoku University,

^oHokkaido University We have been developing the diagnostics of laser-plasma interaction with scattered intense laser. The images and spatially resolved spectra of scattered intense laser

can be used to measure plasma structure and magnetic field, respectively.

ALPSp1-08

Laser stripping for H⁻ beam at J-PARC facility

Genki Onoda¹, Hitoki Yoneda¹, Yurina Michine¹, Aoi Fuchi¹, Hiroyuki Harada²

Pranab Kumar Saha², Atsushi Sato³ Michikazu Kinsho²

¹The University of Electro-Communications, ²JAEA/J-PARC, ³NAT

Laser stripping is an attractive method for applying the charge exchange process in high-power proton accelerators. System design to reduce laser power is the most important issue. We will report on our demonstration experiment at the J-PARC facility.

ALPSp1-09

Low pulse repetition passively mode-locked lasers with multi-pass periodic trajectories in confocal cavity Hsing-Chih Liang, Yu-Hsin Hsu,

Pin-Wen Chena

National Yang Ming Chiao Tung University We demonstrate a low pulse repetition passively mode-locked laser with the zigzag multi-pass trajectories. The pulse repetition rates of 12 MHz and 9 MHz are achieved with the pulse durations of 10 ps.

ALPSp1-10

Long term mirror test for high average and high energy pulse lasers Ryotaro Takahashi, Yurina Michine,

Hitoki Yoneda The University of Electro-Communications

We have conducted long-term mirror tests for high power laser optics. We evaluated several types of coating mirrors. After optimizing the pre-illumination, we achieved damage thresholds beyond 250 J/cm² for 1µm and 90 J/cm2 for 0.53µm.

ALPSp1-11

Evaluation of Optical Loss Characteristics of Hetero-Core Optical Fiber Bending Sensor based on Displacement Test and Beam **Propagation Analysis**

Rikiya Tateishi¹, Kazuhiro Watanabe², Michiko Nishiyama², Yuya Koyama¹ ¹Chiba Institute of Technology, ²Soka University We report that the bending characteristic in an optical loss of a hetero-core optical fiber sensor was evaluated by comparing experimentally obtained results in displacement tests and beam propagation analysis.

ALPSp1-12

Continuous-wave mid-infrared laser from intracavity OPO: exploring the elimination of self-pulsing effect Chun-Yu Cho

National United University

The methods of eliminating self-pulsing from intracavity OPO are theoretically and experimentally explored for achieving efficient mid-infrared continuous-wave output. The methods including gain medium selection and inserting novel damping optics.

ALPSp1-13

Temporal dissipated solitons and spatiotemporal dissipated solitons in mode-locked fiber lasers

Changxi Yang¹, Chenxin Gao¹, Bo Cao¹, Chengying Bao1, Xiaosheng Xiao2 ¹Tsinghua University, Beijing, ²Beijing University of Posts and Telecommunications We report on recent advances of temporal

and spatiotemporal dissipated solitons in mode-locked fiber lasers. We demonstrate a new approach to stabilize spatiotemporal dissipated solitons in multimode fiber femtosecond lasers.

ALPSp1-14

Optical excitation effect by holding beam in pulsed current-driven Semiconductor Optical Amplifiers

Kaito Nagasawa, Yutaro Tashiro, Kazuyoku Tei Tokai University

High contrast optical pulses are generated from a 900nm pulsed current-driven semiconductor optical amplifier using the holding beam technique.

ALPSp1-15

High-repetition-rate spectroscopic polarization measurement by a time-encoded supercontinuum vector beam

Yukihiro Inoue¹, Hayato Kobayashi¹, Hiroki Morita¹, Kazuyuki Sakaue² Toshitaka Wakayama3, Takeshi Higashiguchi1 ¹Utsunomiya University, ²The University of Tokyo, 3 Saitama Medical University We demonstrated 40-MHz detection of a spectroscopic polarization by a timeencoded supercontinuum vector beam. By detecting the time waveforms with a fast photodetector, the total measurement time

ALPSp1-16

was achieved to be 2.5 µs.

Evaluation of dual-wavelength mutual saturable absorption characteristics of single-walled carbon nanotube films

Shohei Takada¹, Keisuke Fukazawa¹ Shotaro Kitajima¹, Ying Zhou², Takeshi Saito², Youichi Sakakibara², Norihiko Nishizawa¹ 1Nagoya University, 2AIST

Dual-wavelength mutual saturable absorption characteristics of SWNT films were evaluated using fiber laser based dual-color pump-probe measurement. Observed maximum modulation depth was 3.63 % when 1 μm pump and 2 μm probe pulses were used.

ALPSp1-17

Coexistence of soliton and contin u o us wave in mode-locked fiber laser based on nonlinear multimode interference

Bole Song, Shan Wang, Zhiguo Lv Inner Mongolia University

To the best of our knowledge, we realize the coexistence of soliton and continuous waves (CW) in a graded-index multimode fiber (GIMF) based anomalous disperision laser operated in L-band for the first time.

ALPSp1-18

Group refractive index measurement of glass samples using fiber-based supercontinuum laser

Ryo Kurihara¹, Hiroki Morita¹, Kento Kowa², Yoshitomo Nakashima², Hiroyuki Kowa², Naoji Oya², Takeshi Higashiguchi ¹Utsunomiya University, ²Trioptics Japan Co., Ltd.

The refractive index of glass samples is an important parameter for designing optical devices. Here, we have developed the low-coherence interferometer using a supercontinuum laser, and measured the group refractive indices of a glass sample at 10 wavelengths in visible range. The results show a good agreement with the minimum deviation method within an uncertainty of 10-4. This method allows us to measure the refractive indices speedy and precisely.

ALPSp1-19

Development of soft material processing technology using ultrashort pulsed Er fiber laser

Kento Takaku, Yasushi Fujimoto Chiba Institute of Technology The establishment of microfabrication technology for soft materials will lead to technological developments in medicine, biotechnology, and other fields. The purpose of this study is to establish processing technology by laser.

Poster Session < Exhibition Hall A>

Wednesday, 24 April

ALPSp1 10:30-12:00

ALPSp1-20

Development of chromatic amplifier using Pr-doped waterproof fluoride glass fiber

Masaya Miyazaki, Yasushi Fujimoto Chiba institute of technology

Single-color gain measurements experiments are demonstrated in Pr-doped waterproof fluoride glass fiber at 640 nm, 522 nm, and 487 nm. Multi-color gain measurements in the fiber are also tested.

ALPSp1-21

Development of high-power visible optical fiber laser

Kan Nishimura, Yasushi Fujimoto

Chiba Institute of Technology We reported on a visible fiber laser using two double-clad structured Pr3+ -doped waterproof fluoro-aluminate glass fiber. We studied the configuration and power scaling of the amplifier to achieve a visible laser output power of 6 W.

ALPSp1-22

Joint measurement of electron density, temperature, and E UV spectrum of laser-produced tin plasma for nanolithography

Yiming Pan¹, Kentaro Tomita¹, Atsushi Sunahara^{2,3}, Akira Sasaki⁴, Katsunobu Nishihara^{3,5}

¹Hokkaido University, ²Purdue University, ³Osaka University, ⁴Kansai Institute for Photon Science, National Institutes for Quantum Science, ⁵Osaka Metropolitan University The plasma density, temperature and the emitted EUV spectra of Sn laser-produced plasmas (LPPs) was measured simultaneously, enabling the first experimental test of existing atomic model for Sn EUV source.

ALPSp1-23

Enhancement of laser produced Sn plasma EUV emission by multi-pulse YAG laser irradiations

Keishin Watanabe¹, Yuito Nishii¹, Tomoyuki Jozaki^{1,2}, Atushi Sunahara^{2,3}, Jia hao Wang¹, Kotaro Yamasaki¹, Takeshi Higashiguch¹⁴, Shinichi Namba¹ *Hiroshima University, ²Osaka University, ³Purdue University, ⁴Usunomiya University* Tin bulk target was irradiated with multi-pulse Nd:YAG laser (1064 nm, 43 ps). By measuring EUV emission and spectral shape, the multi pulse effect was investigated.

ALPSp1-24

Portable femtosecond fiber laser system synchronizable with synchrotron X-ray pulses

Takumi Kyoda, Shuta Sugeta, Yoshihito Tanaka, Keisuke Kaneshima *University of Hyogo*

Introducing a compact, portable femtosecond fiber laser system offering enhanced usability for time-resolved spectroscopy combining laser and synchrotron X-ray pulses.

ALPSp1-25

Development of regenerative liquid bismuth target for shorter wavelength light source

Tatsuya Soramoto¹, Ayaka Ogiwara¹, Tatsuya Soramoto¹, Ayaka Ogiwara¹, Tsukasa Sugiura¹, Hiroki Morita¹, Shinichi Namba², Takeshi Higashiguchi¹ ¹*Utsunomiya University*, ²*Hiroshima University* We developed regenerative liquid bismuth target and observed soft x-ray spectra using it. The number of photons was 1.1 × 10¹³ photons/nm-sr-pulse at peaks at a wavelength of 4.2 nm.

ALPSp1-26

Efficient soft x-ray generation by spectral control of Bi plasma Tomoyoshi Toida¹, Takeru Niinuma¹, Masaki Kume¹, Tsukasa Sugiura¹, Hayato Yazawa¹, Hiroki Morita¹,

Shinichi Namba', Takeshi Higashiguchi¹ ¹Utsunomiya University, ²Hiroshima University We measured soft x-ray spectra from laser-produced Bi plasma in dual laser scheme. To improve conversion efficiency, it is suggested to prevent the formation of low-temperature regions of Bi plasma.

ALPSp1-27

Development of a regenerative amplifier using a Yb:YAG thin-disk with liquid metal bonding

Ayaka Ogiwara¹, Shuma Ako¹, Hiroki Morita¹, Kazuyuki Sakaue², Tatsunori Shibuya³, Ryunosuke Kuroda³, Takeshi Higashiguchi¹ ¹Utsunomiya University, ²The University of Tokyo, ³AIST

We developed a regenerative amplifier using a thin-disk bonded by liquid Ga with high cooling efficiency. The maximum pulse energy was 1 mJ, which was higher than that for the conventional bonding method.

ALPSp1-28

Active control of B-EUV emission spectra

Masaki Kume¹, Tsukasa Sugiura¹, Hayato Yazawa¹, Hiroki Morita¹, Shinichi Namba², Takeshi Higashiguchi¹ ¹Utsunomiya University, ²Hiroshima University The spectral shape of the B-EUV source from a laser-produced gadolinium (Gd) plasma was actively controlled by the dual laser pulses irradiation. We will report on B-EUV spectra, spectral purity, and estimated conversion efficiency.

ALPSp1-29

Study on Nanosecond Laser Processing of Candidate Materials for Plasma-Facing Components in Nuclear Fusion Devices

Haotian Yangʻi, Ryo Yasuhara^{1,2}, Hiroyuki Noto^{1,2}, Daisuke Nagata², Masayuki Tokitani^{1,2}, Haruki Kawaguchi^{1,2}, Chihiro Suzuki^{1,2}, Aleina Miyagawa³, Hiyori Uehara^{1,2} '*The Graduate University for Advanced Studies, ²National Institute for Fusion Science, ³Nagoya Institute of Technology* The effect of nanosecond Nd: YAG laser

processing on the grain structure and mechanical properties of tungsten is evaluated in detail.

ALPSp1-30

Development of a high-power, compact amplifier using Yb:YAG thin-rod

Shotaro Hirao¹, Yasuhiro Kamba², Hiroki Morita¹, Yasuaki Moriai², Atsushi Fuchimukai², Taisuke Miura², Takeshi Higashiguchi¹ *'Utsunomiya University;* ²*Gigaphoton Inc.* We demonstrated a 30-ns, 1030-nm amplification method based on a 30-mm long Yb:YAG thin rod. The amplified power was achieved to be 32 W at a repetition rate of 6 kHz and a total pump power of 220 W with 1-pass amplification.

ALPSp1-31

Development of an Er-fiber Comb Using Semiconductor Saturable Absorber with an Intra-Cavity Electro-Optic Modulator

Tsubasa Kashimura¹, Yohei Sugiyama¹, Yuki Toyoda¹, Yoshiaki Nakajima², Daisuke Akamatsu¹, Feng-Lei Hong¹ 'Yokohama National University, ²Toho University We demonstrated an all-polarizationmaintaining Er-fiber comb using a semiconductor saturable absorber mirror and an intra-cavity waveguide electro-optic modulator (EOM). The EOM is used to stabilize the repetition frequency of the comb with a high-speed servo.

ALPSp1-32

Utilizing Single Fiber Bragg Grating inside Fiber Ring Cavity to Reach Dual-Wavelength Output with Single-Longitudinal-Mode

Kuan-Ming Cheng¹, Tsu-Hsin Wu¹, Teng-Yao Yang¹, Yu-Ting Lai¹, Lan-Yin Chen¹, Chun-Yen Lin¹, Chien-Hung Yeh¹, Jing-Heng Chan Chan¹, Chi-Wai Chow² ¹Feng Chia University, ²National Yang Ming Chiao Tung University

The proposed erbium fiber ring laser configuration with single-longitudinal-mode output by using a fiber Bragg grating in a ring cavity. Hence, based on the nonlinear effect of laser configuration, the downconverted dual-wavelength can be generated.

ALPSp1-33

Dual comb spectroscopy measurement using all-polarization maintainingsingle-cavity SWNT

mode-locked dual-comb fiber laser

Yifei Zhu, Shotaro Kitajima, Norihiko Nishizawa Nagoya University HCN gas absorption spectroscopy using

all-PM single-cavity dual comb fiber laser was demonstrated. With 25-fold averaging, a high signal-to-noise ratio was achieved, enhancing the precision of the spectral data.

ALPSp1-34

Laser frequency stabilization using an optical frequency comb for quantum communication

Koji Nagano¹, Takuto Nihashi², Daisuke Yoshida^{1,2}, Shogo Matsunaga², Daisuke Akamatsu², Feng-Lei Hong², Tomoyuki Horikiri^{1,2}

¹LQÚOM Inc., ²Yokohama National University For quantum communication, quantum repeaters are essential. Within the quantum repeater, laser frequency stabilization system operating at multiple wavelengths is required and can be realized with an optical frequency comb. We have demonstrated this system.

ALPSp1-35

Comparison of spectral normalization techniques in dual-comb spectroscopy Naoki Takeshi¹, Ryusei Uchiyama¹, Kousuke Kubota¹, Takumi Yumoto¹, Yohei Sugiyama², Hong Lei Feng², Yoshiaki Nakajima¹ ¹ Toho University, ²Yokohama National university Interferograms acquired via dual-comb spectroscopy were subjected to normalization using two distinct techniques: polynomial fitting and reference interferogram. The normalized spectra were

compared to acetylene gas absorption data from HITRAN database.

ALPSp1-36

Synthesis and luminescence properties of Nb-based luminescent phosphor

Hayato Sato¹, Shohei Kodama¹, Shunsuke Kurosawa^{2,3,4}, Ikuo Yanase¹, Hiroaki Takeda¹

¹Saitama University, ²Institute for Materials Research, Tohoku University, ³New Industry Creation Hatchery Center, Tohoku University, ⁴Institute of Laser Engineering, Osaka University

The anisotropic scintillation properties of YVO_4 with strong birefringence were evaluated as a candidate inorganic scintillator for dark matter search. In addition, impurity-doped YVO_4 and $YNDO_4$ were synthesized to improve the scintillation light output.

ALPSp1-37

Preparation of Al₂O₃--Yb₃Al₅O₁₂ composite films using CVD method and comparison of their microstructure with composite bulks

Microstructure with composite built Natsumi Imai¹, Shunsuke Kurosawa^{2,3}, Daisuke Matsukura², Akihiro Yamaji², Akihiko Ito¹

¹Yokohama National University, ²Tohoku University, ³Osaka University

We prepared Al₂O₃-Yb₃Al₅O₁₂ (YbAG) composite films using chemical vapor deposition and compared their microstructures with composite bulks grown using micro-pulling down method. Redistribution of carrier between two

localization centers in InGaN multiple

¹Dalian University of Technology, ²Tsinghua

The carrier dynamics in InGaN/GaN multiple

of the indium content and the inhomogeneity

of the electric field between each quantum

quantum wells are independently divided into two localizations, namely the fluctuation

ICNNp-01

University

well.

ICNNp-02

Ying Luo

quantum well

Zilan Wang¹, Bo Liu², Lai Wang²

Influence of Doping on the

Hybrid Photo d etectors

Technology of China

photoconductors.

a Simulation Study

ICNNp-03

Victor Leong¹

almost 70%.

ICNNp-04

Platform

Singapore

Adrian Nugraha Utama1,

Simon Chun Kiat Goh2,

Manas Mukherjee1

Performance of Graphene-based

University of Electronic Science and

how graphene doping impacts the

In this poster, we present findings from

simulations and experiments elucidating

performance of graphene-silicon hybrid

Integrated Silicon Slab Single-Photon

Avalanche Detectors for Visible Light:

Thomas YL Ang², Ray JH Ng², Aswin Alexander¹, Anirudh R Ramaseshan¹,

¹Institute of Materials Research and

Performance Computing, A*STAR

Engineering, A*STAR, ²Institute of High

We explore integrated single-photon

Developing Integrated Quantum

Photonics Via a National Foundry

Naga Manikanta Kommanaboina¹, Yanyan Zhou², Hongyu Li², Victor Leong¹,

¹Institute of Materials Research and

Technology and Research (A*STAR),

Engineering (IMRE), Agency for Science,

Singapore, ²Institute of Microelectronics (IME),

Agency for Science, Technology and Research

Technologies, National University of Singapore,

We present recent photonic devices that are

designed, fabricated, and characterized

within our national foundry platform. We

discuss several aspects, including automation, device performance, and

quantum application.

(A*STAR), Singapore, ³Centre for Quantum

avalanche detectors (SPADs) based on

silicon slab waveguides by performing a

Monte Carlo simulation study. These SPADs

yield a photon detection efficiency of up to

Poster Session < Exhibition Hall A>

Wednesday, 24 April

ICNNp 10:30-12:00

OPTMp 10:30-12:00

Installation of the photosensor for the

underwater laser scanner

Enhancing NbTiN superconducting nanowire single-photon detectors using helium ion irradiation

ICNNp-05

Fabian Wietschorke¹, Stefan Strohauer², Christian Schmid¹, Lucio Zugliani¹, Rasmus Flaschmann¹, Stefanie Grotowski², Manuel Müller³, Björn Jonas¹, Matthias Althamme², Rudolf Gross³, Jonathan Finley², Kai Müller¹ ¹Walter Schottky Institute and School of Computation, Information and Technology, Technical University of Munich, 85748 Garching, Germany, ²Walter Schottky Institute and School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany, ³Walther-Meißner-Institut, 85748 Garching, Germany

We present NbTiN superconducting nanowire single-photon detectors showing a strongly increased system detection efficiency after Helium ion irradiation as well as a detailed study of the defect creation in NbTiN due to the ion bombardment.

ICNNp-06

Prediction Algorithm for Determining Parameters of Broadband Metamaterial

Kenta Hamada, Kubo Wakana

Tokyo University of Agriculture and Technology Metamaterial (MA) thermoelectric conversion is a new mechanism that enables thermoelectric power generation in a uniform thermal radiation environment. In this study, we optimized a parallel structure of hyperbolic metamaterials (HMMs), which exhibit broadband absorption, and evaluated their absorption characteristics. By using deep reinforcement learning, HMMs exhibiting broadband absorption were successfully designed.

ICNNp-07

Fast Optical Phased Array Calibration Leveraging Transfer Learning Based Convolutional Neural Network

Wanchang Gao, Weiming Yao, Haoshuai Mou, Xiaochuan Xu State Key Laboratory on Tunable Laser Technology, Harbin Institute of Technology, Shenzhen

We proposed a transfer learning-based CNN algorithm to achieve rapid calibration for the silicon photonics optical phased array and conducted experimental validation for this algorithm in a 16-channel OPA.

ICNNp-08

Optical Property Changes of Silver and Gold Nanodisk Structures by Thermal Annealing

Kota Yamasaki, Masaki Ozawa, Ryohei Hatsuoka, Tetsuya Matsuyama, Kenji Wada, Koichi Okamoto *Osaka Metropolitan University* We reproduced the localized surface plasmon peak shifts induced by thermal annealing in silver and gold nanodisk structures using numerical simulation. The differences in optical property changes between silver and gold will be discussed.

ICNNp-09

Metalens Design for Symmetric Airy Beams

Yi-Ting Chen¹, Sunil Vyas², Cheng Hung Chu⁴, Kuang-Yuh Huang³, Yuan Luo^{2,4} ¹Nanoengineering and Nanoscience, GSAT, National Taiwan University, Taipei 10617, Taiwan, ²Institute of Medical Devices and Imaging System, National Taiwan University, Taipei, 10051, Taiwan, ³Department of Mechanical Engineering, National Taiwan University, Taipei 10617, Taiwan, ⁴Yong-Lin Institute of Health, National Taiwan University, Taipei, Taiwan

In this paper, we propose a dielectric metasurface using silicon for a unit cell on a silicon oxide substrate for generating symmetric airy beams, which has the peculiar property of abrupt autofocusing [3].

ICNNp-10

High-performance water-resistant subwavelength perovskite single-mode laser

Juan Du¹, Sihao Huang², Zhengzheng Liu², Yuxin Leng²

¹Hangzhoù Institute for Advanced Study, University of Chinese Academy of Sciences, ²Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences We developed defect-suppressed thermalevaporated perovskite thin films with superior gain characteristics by combining an improved triple-source co-evaporation strategy with a transparent SiO₂ plate, enabling stable operation of highperformance subwavelength-scale perovskite lasers underwater. Yutaka Hasegawa¹, Keisuke Akiyama¹, Takamitsu Okada², Shojiro Ishibashi³ '*HAMAMATSU PHOTONICS K.K.*, ²*Mitsubishi Electric Defense and Space Technologies Corp.*, ⁴*Japan Agency for Marine-Earth Science and Technology* We developed the microchannel plates (MCP) Photomultiplier tubes (PMT) for the

underwater laser scanner. This MCP-PMT achieved higher sensitivity and longer life in comparison with conventional products.

0PTMp-02

OPTMp-01

Development of the doppler laser system for under water vehicle speed measurement

Takamitsu Okada¹, Keisaku Takada¹, Shojiro Ishibashi²

¹Misubishi Electric Defense and Space Technologies Corporation, ²Japan Agency for Marine-Earth Science and Technology We developed the doppler laser system for under water vehicle speed measurement. This prototype system measures the doppler velocity of suspended solids in the ocean by capturing the reflected light from suspended

OPTMp-03

solids

Discussion on measurement uncertainty used in laser interference measurement of annular end face of workpieces

Hsiao-Yu Chou, Hui-Jean Kuo, Chao-Te Lee, Jung-Ru Yu, Chien-Yao Huang Taiwan Instrument Research Institute, National Applied Research Laboratories

This article discusses the allowable range changes and industrial applications caused by introducing measurement uncertainty based on the data obtained from 2528 pieces of wafer moving mechanism ejector pins inspected with laser interferometry technology.

OPTMp-04

Advancing Optical Gas Sensor for Sulfur Dioxide Detection in Volcanic Environment

Hsin-Yi Tsai, Ching-Ching Yang, Chin-Ning Hsu, Kuo-Cheng Huang, Chin-Chung Yang *Taiwan Instrument Research Institute, National Applied Research Laboratories* We developed the optical gas sensor for

ver developed in explorating as sension for concentration detection such as suffur dioxide, which has strong correlation between light intensity and SO2 concentration, and can be applied to gas concentration monitoring in volcanic environment.

OPTMp-05

Online Monitoring System Development for Ultrasonic Processing of Optical Materials

ChienYao Huang, ChungYing Wang, JunCheng Chen, ShuCheng Shyu Taiwan Instrument Research Institute, National Applied Research Laboratories This study employs a CNC milling machine with an ultrasonic-assisted processing module, applied to optical material processing. Combined with an online dimensional measurement module and various sensors, this system allows real-time monitoring of processing accuracy.

Poster Session < Exhibition Hall A>

Wednesday, 24 April

OPTMp 10:30-12:00

OPTMp-06

Enhancing Cup Grinding Wheel Monitoring: Automated Boundary Adjustment Algorithm for Precision Profile Measurement

Chung-Ying Wang¹, Shih-Chieh Lin², Chien-Yao Huang¹, Jun-Cheng Chen¹, Shu-Cheng Shyu

¹Taiwan Instrument Research Institute, NARLabs, ²National Tsing Hua University Introduction of an algorithm for automatic boundary adjustment in cup grinding wheel profile data, enhancing wear metrics accuracy.

0PTMp-07

Measurement of absolute length difference based on optical fiber interferometer

Xin Lai', Qiuheng Song², Yixiao Ma¹, Yuchen Song¹, Kun Jia¹, Lai Zhang¹, Yuanyuan Sun¹, Pengwei Zhou¹, Hekuo Peng¹, Qian Xiao1, Bo Jia1

¹Fudan University, ²Sichuan Fujinan Technology CO., LTD

A method of measuring the absolute length difference between two arms of optical fiber interferometer based on the phase modulation of light source is proposed. The method is suitable for both short-distance and long-distance optical fiber interference systems, and implementable for compensating and measuring absolute length difference of in-service optical fiber interferometer.

OPTMp-08

Enhancing Glass Grinding Efficiency Integrating Machine Learning and **Heuristic Techniques**

Yen Han Chiang¹, Chien-Yao Huang², Chung-Ying Wang²

¹National Center for High-performance Computing National Applied Research Laboratories, ²National Applied Research Laboratories Taiwan Instrument Research Institute

Study integrates machine learning and heuristic algorithms to enhance glass grinding, improving surface roughness and efficiency by over 3.5% and 10%, respectively.

OPTMp-09

Evaluation of Long-Term Stability of Gloss Calibration

Hui-Jean Kuo, Meng-Jie Lin, Ho-Lin Tsay, Chien-Yao Huang National Applied Research Laboratories,

Taiwan Instrument Research Institute

In this paper, we propose a method to replace previous long-term stability assessments. The results show that more accurate long-term stability uncertainties can be obtained using this method.

OPTMp-10

Development of Smart Spindle Applied for Brittle Materials Polish

Rou-Jhen Chen¹, Yi-Cheng Lin¹, Ray-Ching Hong¹, Shiau-Cheng Shiu², Ruei-Feng Tsai³, Chun-Wei Liu² Wen-Tse Hsiao1

¹Taiwan Instrument Research Institute National Applied Research Laboratories ²Department of Power Mechanical Engineering, National Tsing Hua University, ³WINDIRS TECHNOLOGY CO.LTD.

In the view of this, this study to develop a sensing polishing head and a sensing polishing spindle as the smart aerostatic spindle for use in the optical component polishing process

XOPTp-01

Europium Doped Zinc Oxide Thin Films Grown by Pulsed-Laser Deposition Wei-Lon Wei¹, Tzu-Chi Huang^{3,1}, Yu-Hao Wu^{4,1} Chien-Yu Lee¹, Bo-Yi Chen¹, Gung-Chian Yin¹, Bi-Hsuan Lin¹, Fang-Yuh Lo², Mau-Tsu Tang¹ ¹National Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan, ²Department of Physics, National Taiwan Normal University, Taipei 11677, Taiwan, ³Department of Chemical Engineering, National United University, Miaoli 360302, Taiwan, ⁴Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan The Eu-doped ZnO thin film samples had been deposited via pulsed-laser deposition. PL, XANES and XRF mapping had been utilized to characterize the samples.

XOPTp-02

Fabrication of X-ray absorption gratings with 9 µm period by centrifugal deposition Ren Nasukawa¹, Yui Bishago¹

Kentaro Kajiwara³, Xiaoyu Liang^{1,2}, Wataru Yashiro^{1,2,4,5} Tohoku University, ²IMRAM, ³JASRI, ⁴SRIS,

⁵The University of Tokyo A challenge in X-ray grating interferometer

is to fabricate high-aspect-ratio absorption X-ray gratings. While gold electro plating is commonly used to fill trenches of gratings, centrifugal deposition may be viable alternative as low-cost and high-throughput method. In this study, we fabricated an absorption grating with 9 μm period and 54 μm trench depth by centrifugal deposition and achieved visibility of 25.6 % in Talbot interferometry.

XOPTp-03

Development of high-precision electroformed Wolter mirror for X-ray telescope

Shutaro Mohri¹, Shunsuke Ito¹ Satoru Egawa¹, Hiroto Motoyama¹ Guo Jianli¹, Gota Yamaguchi², Takehiro Kume³, Yusuke Matsuzawa³, Hidekazu Takano², Yoshiki Kohmura², Makina Yabashi², Hidekazu Mimuraⁱ ¹The University of Tokyo, ²SPring-8, RIKEN,

³Technology Center, Natsume Optical Corporation

We newly developed the figure correction apparatus for the master mandrel to improve the figure accuracy of Wolter mirror equipped as imaging optics in FOXSI-4 project. The imaging performance of Wolter mirror fabricated with the mandrel was evaluated at BL29XU, SPring-8. HPD of EEF was 4 arcsec and 17 arcsec when X-ray of 12 keV was applied to the machining area, and the non-machining area, respectively.

XOPTp-04

Development and Optimisation of a Table-Top Soft X-Ray Light Source using Novel Techniques

Ruairí Brady, Kevin Mongey, Ben Delaney, Emma Sokell, Fergal O'Reilly University College Dublin This paper presents an update on the development of a high radiance, laser-

produced plasma soft x-ray light source. Radiance optimisation techniques and novel engineering strategies are discussed.

XOPTp-05

Scanning X-ray Fluorescence Microscopy using white SR at SAGA Light Source

XOPTp 10:30-12:00

Akio Yonevama¹ Masahide Kawamoto¹

Advanced Industrial Science and Technology

Osaka Metropolitan University

To investigate the character of quantum the spin-polarization quantum correlation.

Optics critical components at

Mikako Makita, Idoia Freijo Martin Liubov Samoylova, Silja Schmidtchen, Kelin Tasca, Marziyeh Tavakkoly, Antje Trapp, Harald Sinn

completely new kind of experiments are also specifications for the needed optical devices. I will show the most critical components that are still in very high demand at European XFEL even after 6 years of Operations and

XOPTp-08

X-ray Optics for the Solar Flare Sounding Rocket FOXSI-4: Vibration

Ryuto Fujii¹, Koki Sakuta¹, Kazuki Ampuku¹ Yusuke Yoshida¹, Takashi Ito¹, Kumiko Okada¹, Keitoku Yoshihira¹, Tetsuo Kano¹, Naoki Ishida¹, Yoshitaka Inoue², Keisuke Tamura Kikuko Miyata⁵, Noriyuki Narukage⁶, Gota Yamaguchi⁷, Shunsuke Ito⁸ Shutaro Mohri⁸, Takehiro Kume⁹ Yusuke Matsuzawa9, Yoichi Imamura9 Takahiro Saito9, Kentaro Hiraguri9 Hirokazu Hashizume9, Hidekazu Mimura7,8, Ikuvuki Mitsuishi¹

³NASA/GSFC, ⁴University of Maryland, ⁵Meijo University, 6 National Astronomical Observatory Japan, 7 RIKEN/ SPring-8, 8 The University of Tokyo, ⁹Natsume Optical Corporation

X-ray telescopes for a solar sounding rocket experiment FOXSI-4 with a combination of space- and ground-based technologies. We confirmed tolerance of the telescopes to vibration during rocket launch.

XOPTp-09

Development of High-resolution Space X-ray Optics for the Solar Flare Sounding Rocket FOXSI-4: Ray-tracing Simulation

Yusuke Yoshida1, Koki Sakuta1, Kazuki Ampuku¹, Ryuto Fujii¹, Kumiko Okada¹, Keitoku Yoshihira¹, Tetsuo Kano¹, Naoki Ishida¹, Wataru Kato¹, Yoshitaka Inoue² Keisuke Tamura^{3,4}, Kikuko Miyata⁵, Noriyuki Narukage⁶, Gota Yamaguchi⁷, Shunsuke Ito⁸, Shuntaro Mohri⁸, Takehiro Kume⁹, Yusuke Matsuzawa⁹, Yoichi Imamura9, Takahiro Saito9, Kentaro Hiraguri9, Hirokazu Hashizume9, Hidekazu Mimura^{7,8}, lkuyuki Mitsuishi¹ ¹Nagoya University, ²IMV CORPORATION, ³NASA/GSFC, ⁴University of Maryland, ⁵Meijo University, ⁶National Astronomical Observatory Japan, 7RIKEN/SPring-8, 8The University of Tokyo, 9Natsume Optical Corporation In order to quantitatively interpret the measured data and create response functions for our X-ray optics, we have constructed our original ray tracing simulator. We have confirmed that the absolute values of the effective area as a function of an energy and the relative values as a function of an off-axis angle are consistent with simulation results. We will

XOPTp-10

Development of monolithic bimorph mirror based on single crystal piezoelectric element for variable beam size optical system

Junya Yoshimizu¹, Takato Inoue^{1,} Yoshiki Kohmura³, Makina Yabashi³, Satoshi Matsuyama1

report the details of the results.

¹Nagoya University, ²Osaka University, ³RIKEN SPring-8 Center

To realize a variable beam size optical system for multiple X-ray analyses, we have developed a new monolithic bimorph mirror based on a single-crystal piezoelectric element that has a simple structure but can have large deformation. The proof-ofconcept test performed at SPring-8 showed that the beam size can be changed between mm and sub 1 µm at an X-ray energy of 10 keV

XOPTp-11

Development of high-resolution X-ray microscope with multilayer AKB mirror for 17.5 keV X-ray

Satsuki Ito¹, Kazuhiko Omote², Raita Hirose², Takato Inoue1,3, Sota Nakabayashi1 Haruhito Iriyama¹, Jumpei Yamada³, Yoshiki Kohmura⁴, Makina Yabashi⁴, Satoshi Matsuyama^{1,3} ¹Nagoya University, ²Rigaku Corporation, ³Osaka University, ⁴RIKEN

A high-resolution X-ray microscope was developed with a large-NA multilayer AKB mirror for 17.5 keV X-rays. A performance test conducted at SPring-8 demonstrated that minimum structure with 20 nm width of a test chart could be clearly resolved.

^ooster Program

Satoshi Takaya² SAGA Light Source, ²National Institute of

The X-ray energy of a scanning X-ray fluorescence microscope at SAGA Light Source was increased from 6 to 10 keV by introducing new mirrors with a designed incidence angle of 5 mrad to increase sensitivity to heavy elements.

XOPTp-06

Quantum correlation between spin of photoelectrons and polarization of emitted X-ray photons in 3d transition metal oxides

Ryo Barnabas Tanaka, Takayuki Uozumi

entanglement in X-ray region, we theoretically investigate the entanglement between the spin of photoelectrons and the polarization of emitted photons in XEPECS process for 3d transition metal oxides, where XEPECS means coincidence spectroscopy of photoelectrons and emitted X-ray photons. We will discuss the effect of M3d - 02p hybridization and intra-atomic multiplet on

XOPTn-07

New and old challenges for X-Ray European XFEL

Maurizio Vannoni, Immo Bahns,

European XFEL GmbH, Germany The European XFEL is a X-ray free-electron laser facility that provides x-ray radiation with outstanding characteristics. The same characteristics that are potentially enabling creating unique and demanding

their impact to upgrade projects.

Development of High-resolution Space Test

¹Nagoya University, ²IMV CORPORATION,

We have been developing our original space

Poster Session < Exhibition Hall A>

Wednesday, 24 April

XOPTp 10:30-12:00

XOPTp-12

High-speed X-ray Imaging of Electrical Discharge Machining (EDM)

Hiroto Motoyama¹, Yusuke Kudo¹, Satoru Egawa¹, Gota Yamaguchi², Shota Yamamoto¹, Ryosuke Kawashima¹, Jianli Guo¹, Hirokatsu Yumoto²³, Takahisa Koyama^{2,3}, Hidekazu Takano², Yujiro Hayashi², Haruhiko Ohashi^{2,3}, Makina Yabashi², Hidekazu Mimura^{1,2} ¹*The University of Tokyo*, *PRIKEN*, ³JASRI High-speed X-ray imaging technique is applied to electric discharge machining. Distinctive vibration patterns were extracted from X-ray movies. We discuss the analysis results at the conference.

XOPTp-14

4D-CT imaging of lathe drilling of steel workpieces using synchrotron X-rays at 100 keV

Satoru Egawa¹, Ryosuke Kawashima², Shota Yamaguchi³, Hiroto Motoyama¹, Gota Yamaguchi³, Yusuke Kudo², Jianli Guo¹, Hirokatsu Yumoto^{3,4}, Takahisa Koyama^{3,4}, Hidekazu Takano³, Yujiro Hayashi³, Haruhiko Ohashi^{3,4}, Makina Yabashi^{3,4}, Hidekazu Mimura^{1,3}

¹Research Center for Advanced Science and Technology, The University of Tokyo, ²Department of Precision Engineering, School of Engineering, The University of Tokyo, ³RIKEN SPring-8 Center, ⁴Japan Synchrotron Radiation Research Institute

4D-CT imaging of lathe drilling of steel workpieces was demonstrated using synchrotron X-rays at BL05XU of SPring-8. We observed lathe drilling, in which a workpiece is rotated while a drill is kept stationary. Assuming the shape of the workpiece does not change during one rotation, its three-dimensional structure can be reconstructed by CT.

XOPTp-15

Development of X-ray wavefrontcorrected multilayer mirrors for high-resolution holography imaging

Kota Shiol¹, Jumpei Yamada¹, Atsuki Ito¹, Ichiro Inoue^{2,3}, Taito Osaka^{2,3}, Gota Yamaguchi², Yuichi Inubushi^{2,3}, Daisetsu Toh¹, Yasuhisa Sano¹, Makina Yabashi^{2,3}, Kazuto Yamauchi¹

¹Osaka University, ²RIKEN SPring-8 Center, ³JASRI

X-ray propagation-based holography is a promoting phase-contrast imaging techniques for fast non-destructive observation in a single shot. We have been using X-ray mirror optics to make available a beam with a small focusing diameter and high flux. To enhance resolution, surface roughness must be controllable to the nano-level. We report on the basic study of tungsten silicide, which is useful for reducing surface roughness.

XOPTp-16

Towards Stimulated X-Ray Raman Scattering Imaging System Using X-Ray Free-Electron Laser

Yu Nakata¹, Jordan T. O'Neal^{1,3}, Kai Sakurai^{1,2}, Kyota Yoshinaga¹, Takenori Shimamura^{1,2,3}, Takashi Kimura^{1,3} ¹The University of Tokyo, ²Japan Synchrotron

Radiation Research Institute, ³RIKEN

Our final goal is to realize the stimulated X-ray Raman scattering imaging using an X-ray free-electron laser. To this end, we estimated the signal intensity and considered the optimal optics for the experiment.

XOPTp-17

High-pressure plasma etching for a finish processing of a micro channelcut crystal monochromator Masafumi Miyake¹, Shotaro Matsumura¹, lori Ogasahara¹, Taito Osaka²,

 Kazuto Yamauchi¹, Makina Yabashi^{2,3},
 Yasuhisa Sano¹
 ¹Osaka University, ²RIKEN/SPring-8, ³JASRI
 We proposed the high-pressure plasma etching method to fabricate a micro channel-cut crystal monochromator for reflection self-seeding XFEL. In this presentation, we will talk its processing characteristics.

XOPTp-18

XAFS-imaging & phase-contrast imaging via a full-field X-ray microscope based on Advanced Kirkpatrick-Baez mirror

Atsushi Yakushigawa¹, Jumpei Yamada^{1,2}, Tomoya Uruga³, Hidekazu Takano², Hirosuke Matsu⁴, Daisetsu Toh¹, Yasuhisa Sano¹, Makina Yabashi^{2,3}, Kazuto Yamauchi¹ ¹Osaka University, ²Riken SPring-8 Center, ³JASRI, ⁴Nagoya University

In the presentation, we will report detailed specifications of the nano-XAFS/CT system installed to SPring-8 BL36XU and recent results of high-resolution XANES imaging and propagation-based phase contrast imaging.

XOPTp-19

Development of scanning-imaging X-ray microscope using advanced Kirkpatrick–Baez mirror Atsuya Nagamatsu¹, Jumpei Yamada¹,

Atsushi Yakushigawa¹, Akihisa Takeuchi², Kentaro Uesugi², Daisetsu Toh¹, Yasuhisa Sano¹, Makina Yabashi^{2,3}, Kazuto Yamauchi¹ ¹Osaka University, ²JASRI, ³RIKEN SPring-8 Center

Scanning-imaging X-ray microscopy (SIXM) is an X-ray imaging system that utilizes optics akin to a "line-scan camera". We have developed an SIXM system using total-reflection advanced Kirkpatrick–Baez (AKB) mirrors to achieve high-throughput and achromatic multimodal X-ray images with high spatial resolution. We will report the details of the demonstrated imaging system, techniques for the resolution enhancement and prospects.

XOPTp-20

The Construction of TPS 31A2 Transmission X-ray Microscopy (TXM) Endstation

Bo-Yi Chen, Ming-Ying Hsu, Chien-Yu Lee, Ying-Shuo Tseng, Chao-Chih Chiu, Hsiu-Chien Chan, Shih-Ting Lo, Cheng-Yao Fu, Yu-Chun Chou, Yu-Shan Huang, Gung-Chian Yin National Synchrotron Radiation Research Center

The Transmission X-ray Microscope (TXM) endstation at the Taiwan Photon Source (TPS) shares similar functionalities with the Projection X-ray Microscope (PXM) endstation. Both endstation serve as potential scientific tools for micro-computed tomography (micro-CT) and prove invaluable for non-destructive industrial inspections.

HEDSp-01

lonization of argon ions K-shell in clusters heated by strong laser pulses with intensity up to 5×10^{21} W/cm².

Sergey N. Ryazantsev¹, Igor Skobelev², Maksim Sedov², Sergey Pikuz¹, Takafumi Asai^{3,4}, Masato Kanasaki Takatumi Asal³⁷, Masato Kanasaki⁷, Tomoya Yamauchi³, Satoshi Jinno^{5,13}, Masato Ota^{6,7,14}, Syunsuke Egashira^{6,7}, Kentaro Sakal^{8,14}, Takumi Minami^{1,8}, Yuki Abe^{7,8}, Atsushi Tokiyasu⁹, Hideki Kohri¹⁰, Yasuhiro Kuramitsu^{7,8}, Youichi Sakawa⁷, Yasuhiro Miyasaka⁴, Kotaro Kondo⁴, Akira Kon⁴, Akito Sagisaka⁴, Koichi Ogura⁴, Alexander S. Pirozhkov⁴, Masaki Kando⁴ Hiromitsu Kiriyama⁴, Tetsuya Kawachi⁴ Tatiana A. Pikuz¹¹, Evgeny D. Filippov¹², Ryosuke Kodama⁷, Yuji Fukuda⁴ ¹HB11 Energy Holdings Pty Ltd., ²Joint Institute for High Temperatures of RAS, ³Graduate School of Maritime Sciences, Kobe University, ⁴Kansai Institute for Photon Science (KPSI), National Institutes for Quantum Science and Technology (QST), ⁵Nuclear Professional School, The University of Tokyo, ⁶Graduate School of Science, Osaka University, ⁷Institute of Laser Engineering, Osaka University, ⁸Graduate School of Engineering, Osaka University, ⁹Research Center for Electron Photon Science, Tohoku University, 10 Research Center for Nuclear Physics, Osaka University, ¹Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, ¹²Centro de Laseres Pulsados (CLPU), ¹³Tono Geoscience Center, Japan Atomic Energy Agency (JAEA), 14 National Institute for Fusion Science

An X-ray spectroscopic approach is described to distinguish the effects of collisional processes and the incident optical field on the ionization state of the plasma generated in a gas cluster target irradiated with PW laser pulses.

HEDSp-02

Formation of a deep cylindrical cavity in LiF crystal by XFEL radiation

Sergey Makarov², Sergey Grigoryev² Tatiana Tatiana Pikuz¹, Nail Inogamov³ Victor Khokhlov³, Norimasa Ozaki¹ Masahiko Ishino⁴, Masaharu Nishikino⁴, Thanh-hung Dinh⁴, Tetsuya Kawachi⁴, Mikako Makita5, Motoaki Nakatsutsumi5 Thomas R. Preston⁵, Karen Appel⁵, Zuzana Konopkova⁵, Valerio Cerantola⁵, Erik Brambrink⁵, Jan-Patrick Schwinkendorf⁵, Istvan Mohacsi⁵, Ludovic Rapp⁶, Andrei Rode6, Eugene Gamaly6 Takahisa Shobu⁷, Aki Tominaga⁷ Hirotaka Nakamura', Ryosuke Kodama', Vasily Zhakhovsky², Sergey Pikuz⁸, Ulf Zastrau' ¹Osaka University, ²Joint Institute for High Temperatures RAS, ³Landau Institute for Theoretical Physics RAS, ⁴Kansai Institute for Photon Science QST, 5European XFEL, ⁶Australian National University, ⁷Material Science Research Center of Japan Atomic Energy Agency, ⁸HB11 Energy Holdings The damage of the LiF crystal after irradiating it with the EuFEL pulses at photon energy 9 keV was investigated for delivered doses in the range of 2 -850 kJ/cm³ per pulse. Complexes analysis of the LiF sample showed the formation of the unexpected deep cylindrical cavity with a ratio diameter to a depth of more than 1: 100 at doses > 250 kJ/cm3. The result is important for material processing.

HEDSp 13:30-15:00

HEDSp-03

Path for high-gain laser fusion with fast ignition scenario - FIREX-NEO (Numerical Experiment Optimization) project -

Yasuhiko Sentoku¹, Natsumi Iwata¹, Hideo Nagatomo¹, Tomoyuki Johzaki² 'Institute of Laser Engineering, The University of Osaka, ²Graduate School of Advanced Science and Engineering, HIroshima University The latest status of integrated numerical simulation of ignition-class fast ignition fusion, including energy transport in core plasma and burning physics, and how to modeling them, will be presented.

HEDSp-04

Ab initio molecular dynamics simulations of CH₄ and H₂S mixture at planetary interior conditions

Daisuke Murayama¹, Satoshi Ohmura², Ryosuke Kodama^{1,3}, Norimasa Ozaki^{1,3} ¹Osaka University, ²Hiroshima Institute of Technology, ³Institute of Laser Engineering CH₄ is one of the major constituents in icy giants, Uranus and Neptune, and H₂S was detected above the clouds in the atmosphere of Uranus. To obtain insights into the structural and chemical bonding properties, we calculated the pair-distribution functions and bond-overlap populations. Our findings could lead to elucidating the existence of H₂S in the atmosphere of the icy giants.

HEDSp-05

Analysis of Intense Laser Pulse Response of Graphene Using First-Principles Calculations

Ryotaro Kawai¹, Harihara Sudhan Kumar¹, Naofumi Ohnishi¹, Yasuhiro kuramitsu² '*Tohoku University*, ²*Osaka University* The interaction between electromagnetic waves and electrons is investigated by first-principles calculations to predict the target state changes when intense laser irradiation of graphene produces highenergy ions.

HEDSp-06

Magnetic field amplification in layered hollow cylindrical targets

Jessa Jayne Miranda¹, Wilson Garcia¹, Masakatsu Murakami², Myles Allen Zosa¹ ¹National Institute of Physics, University of the Philippines Diliman, ²Institute of Laser Engineering, Osaka University

Micro-tube implosion (MTI) is a recently proposed scheme to generate strong magnetic field. In this study, we simulate MTI in uncoated and coated hollow cylindrical hydrogen targets using EPOCH. The results for the gold-coated target show that the largest B_{max} of ~113 times the initial seed is observed at 270 fs before it continuously decreases, reaching ~14 times the initial seed at 1000 fs.

Wednesday, 24 April

HEDSp 13:30-15:00

HEDSp-07

Characteristics of laser-generated whistler waves propagating in high-density plasma

Masayasu Hata¹, Takayoshi Sano² ¹National Institutes for Quantum Science and Technology, ²Osaka University

Recently laser-generated whistler waves have attracted attention because they enable direct heating of high-density plasmas. We have investigated its characteristics by kinetic simulations up to date. As a result, we have found that strong stimulated Brillouin scattering inhibits the whistler wave propagation and therefore transmitted pulse duration is limited.

HEDSp-08

Particle-in-cell simulations of shockwaves in plasma

Jinyuan Dun^{1,2}, Justin Ray Angus², William Farmer², Alex Friedman², Vasily Geyko², Debojyoti Ghosh² Frank R Graziani², David P Grote², David Larson², Anthony J. Link², George B. Zimmerman², Shinsuke Fujioka¹ ¹Institute of Laser Engineering, Osaka University, ²Lawrence Livermore National Laboratorv

In this research, we present fully kinetic results of shockwaves in plasmas ranging from Z=1 to Z=10. The simulations are performed using the energy- and chargeconserving particle-in-cell algorithm in PICNIC. In contrast to some theories for shocks in plasmas with Z>5, where the classical electron viscosity can exceed that of the ions, the electron heating in the viscous sublayer is insignificant compared to that for the ions for all values of Z considered

HEDSp-09

Femtosecond X-ray Imaging of **Ultrafast Dislocations in Shocked** Diamond

K. Katagiri^{1,2,3,4,5}, T. Pikuz⁶, L. Fang^{1,2,3}, B. Albertazzi⁷, S. Egashira⁵, Y. Inubushi^{8,9} G. Kamimura⁴, R. Kodama^{4,5,6}, M. Koenig^{4,7},
 B. Kozioziemski¹⁰, G. Masaoka⁴, K. Miyanishi⁹ H. Nakamura⁴, M. Ota⁵, G. Rigon¹¹, Y. Sakawa⁵, T. Sano⁵, F. Schoofs¹², Z. J. Smith¹³ K. Sueda⁹, T. Togashi⁸, T. Vinci⁷, Y. Wang^{1,2,3}, M. Yabashi^{8,9}, T. Yabuuchi^{8,9}, L. E. Dresselhaus-Marais^{1,2,3}, N. Ozaki^{4,5} ⁷Department of Materials Science & Engineering, Stanford University, ²SLAC National Accelerator Laboratory, ³PULSE Institute, Stanford University, 4 Graduate School of Engineering, Osaka University, ⁵Institute of

Laser Engineering, Osaka University, ⁶Institute for Open and Transdisciplinary Research in Initiatives, Osaka University, ⁷LULI, CNRS, CEA, Ecole Polytechnique, UPMC, Univ Paris 06: Sorbonne Universites, Institut Polytechnique de Paris, 8 Japan Synchrotron Radiation Research Paris, Japan Sylicitotion Hadadon Research Institute, ⁸RIKEN SPring-8 Center, ¹⁰Lawrence Livermore National Laboratory, ¹¹Department of Physics, Nagoya University, ¹²United Kingdom Atomic Energy Authority, Culham Science Centre, ¹³Department of Applied Physics, Stanford University

The maximum speed of dislocation motions in a crystal was thought to be limited by the transverse sound speed of the crystal. Theoretical studies, however, indicate that the dislocations can move faster than transverse sound speed if they are created at such high speeds.

HEDSp-10

In-situ X-ray Diffraction of Additively Manufactured Eutectic High Entropy Alloy under Shock Compression and Release

A. Hari^{1,2,3}, K. Katagiri^{1,2,3}, S. Irvine^{2,3,4} L. Madril^{1,2,3}, A. Amouretti⁵, Y. Inubushi^{6,7}, R. Kodama^{5,8}, K. Miyanishi⁷, H. Nakamura⁵,

- N. Ozaki^{6,8}, J. E. Ren⁹, Y. Seto¹⁰, K. Sueda⁷, S. Takagi¹¹, Y. Umeda¹², M. Yabashi^{6,7}, T. Yabuuchi^{6,7}, W. Yang⁹, Y. Vohra¹³, W. Chen⁹,
- L. Dresselhaus-Marais¹

¹Department of Materials Science and Engineering, Stanford University, ²SLAC National Accelerator Laboratory, ³PULSE Institute, Stanford University, ⁴Department of Applied Physics, Stanford University, 5 Graduate School of Engineering, Osaka University, ⁶Japan Synchrotron Radiation Research Institute, ⁷RIKEN SPring-8 Center, ⁸Institute of Laser Engineering, Osaka University, ⁹Department of Mechanical and Industrial Engineering, University of Massachusetts, ¹⁰ Graduate School of Science, Osaka Metropolitan University, ¹¹ Earth and Planets Laboratory, Carnegie Institution for Science, ¹²Institute for Integrated Radiation and Nuclear Science, Kyoto University, 13 Department of Physics, University of Alabama at Birmingham Eutectic high entropy alloy (EHEA) AICoCrFeNi2.1 additively manufactured through laser powder bed fusion has both high strength and ductility due to its far-from-equilibrium, dual-phase nanolamellar structure consisting of both fcc and bcc phases.

HEDSp-11

Experimental platforms for laserbased HED science at the SACLA X-ray free-electron laser facility

Kohei Miyanishi¹, T. Yabuuchi^{1,2}, Y. Inubushi^{1,2}, K. Sueda¹, T. Togashi^{1,2}, H. Tomizawa^{1,2}, M. Yabashi^{1,2}

¹RIKEN SPring-8 Center, ²Japan Synchrotron Radiation Research Institute

X-ray Free Electron Lasers (XFELs) are revolutionizing various scientific domains, including high-energy-density (HED) science, thanks to their unparalleled brilliance, ultrashort pulse durations, and high spatial coherence. These features enable unprecedented observations and experiments.

LEDIAp-01

Demonstration of high aspect ratio etching by Ni mask process for $\mu\text{-LED}$ monolithic integration

Haruto Fujii, Takeyoshi Onuma, Tomohiro Yamaguchi, Tohru Honda Kogakuin University

Monolithically integrated $\mu\text{-LED}$ displays were investigated. The Ni mask process, in which SiO₂ and Ni were deposited on the GaN template, realized a high aspect ratio etching without changing etching conditions.

LEDIAp-02

Current Transport and Photodetection in Contacts of Graphene Quantum Dot and GaN

Bhishma Pandit, Daeju Kim, Jaehee Cho Jeonbuk National University The contacts of graphene quantum dots (GQDs) formed on a n-type GaN semiconductor were investigated to provide understanding of the current transport mechanism between GQDs and semiconductor materials.

LEDIAp-03

Investigation of sidewall-surface recombination using InGaN based blue and red micro-LEDs

Heajeong Cheong^{1,2,3}, Jeong-Hwan Park³, Markus Pristovsek², Woong Kown¹, Hiroshi Amano1,2,3 ¹Graduate School of Engineering, Nagoya

University, ²CIRFE, Institute of Materials and Systems for Sustainability (IMaSS), Nagoya University, ³Venture Business Laboratory, Deep Tech Serial Innovation Center, Nagoya University, ⁴Institute for Advanced Res (IAR), Nagoya University

As for the red emission source in µLEDs display system, AlGaInP-based and InGaN-based µLEDs are competing. Here, we reveal that the detailed mechanism why the sidewall-surface recombination occurs, and which parameter determines the carrier loss through a comparison between InGaN-based blue and red µLEDs, which have not been covered in any other reports to date

LEDIAp-04

High-efficiency InGaN tunnel-junction laser diode

Sung-Un Kim, Dae-Young Um, Jeong-Kyun Oh, Vignesh Veeramuthu, Cheul-Ro Lee, Yong-Ho Ra Jeonbuk National University We fabricated a 5x5µm² sized GaN nanorod photonic crystal laser diode (LD). This LD demonstrated a turn-on voltage of ${\sim}2.5\,\text{V}$ and lasing wavelength at \sim 502 nm with a FWHM of \sim 1 nm.

LEDIAp-05

Improvement of Optical Isolation in GaN-based Integrated Micro-LEDs

Julian Keller, Haruto Fujii, Yamato Yamazaki, Takeyoshi Onuma, Tomohiro Yamaguchi, Tohru Honda Kogakuin University

Optical isolation was investigated to realize monolithically integrated micro-LED displays. Reductions of crosstalk and Halo effect, which are issues for micro-LEDs, were accomplished by applying titaniumbased black pigment coating to the front and back surfaces

LEDIAp-06

Basic properties of heavily Ge-doped GaN and AlGaN prepared by pulsed sputtering

Aiko Naito. Kohei Ueno. Hiroshi Fuijoka The University of Tokyo

We grew heavily Ge-doped GaN and AlGaN by pulsed sputtering and confirmed the formation of highly degenerate GaN and AlGaN. We have achieved a record-large optical bandgap of 3.84 eV for GaN.

LEDIAp-07

Evaluation of neutron detection characteristics of BGaN detector using long wavelength neutron beam

Sakurai¹, K. Ando¹, R. Kudo¹, S. Kawasaki² K. Takagi³, J. Nishizawa³, M. Hino⁴, Y. Honda⁵, H. Amano⁵, Y. Inoue¹, T. Aoki³, T. Nakano^{1,3} ¹Graduate School of Integrated Science and Technology, Shizuoka University, ²Graduate School of Integrated Science and Technology, Nagoya University, 3Research Institute of Electronics, Shizuoka University, ⁴Institute for Integrated Radiation and Nuclear Science, Kyoto University, ⁵Institute of Materials and System for Sustainability, Nagoya University In this study, BGaN devices with increased B content compared to conventional devices were used to evaluate neutron detection characteristics using a long wavelength neutron beam at port C3-1-2 (MINE-1) of Japan Research Reactor (JRR-3). The

resulting evaluation using a long-wavelength neutron beam shows that a detection signal peak originating from neutron capture has been obtained, allowing a detailed study of neutron detection in BGaN devices.

LEDIAp-08

Separation of AlGaN-based LED structures from AIN/sapphire template by photoelectrochemical etching

Yoshio Honda¹, Yuta Furusawa¹ Ryoko Tsukammoto¹, Yoshiki Saito², Koji Okuno², Shinya Boyama², Atsushi Miyazaki2, Maki Kushimoto1, Hiroshi Amano1

¹Nagoya University, ²Toyoda Gosei The study aims to enhance UVLEDs' light extraction efficiency by using photoelectrochemical (PEC) etching to detach the LED structure from AIN/sapphire substrates. Employing a sacrificial layer of low Al composition n-AlGaN and a highpressure mercury vapor lamp, the method achieved detachment up to size of 60 um with etching rates exceeding 30um/h.

LEDIAp-09

Enhancing carrier transport and capture with a good current spreading characteristic via graphene quantum dots in InGaN/GaN multiple-quantumwell light emitting diodes

Shih-Wei Feng¹, S. K. Fung¹, C. Y. Tsai¹, J. L. Shen², H. C. Wang³, J. Han⁴ ¹Department of Applied Physics, National University of Kaohsiung, 2Department of Physics and Center for Nanotechnology, Chung Yuan Christian University, ³Department of Mechanical Engineering and Advanced Institute of Manufacturing with High-tech Innovations, National Chung Cheng University, ⁴Department of Electrical Engineering, Yale University

InGaN-based LEDs with graphene quantum dots (GQDs) are studied with time-resolved electroluminescence measurements. The shorter response, rise, delay, and recombination times of the LEDs with GODs provide more efficient carrier injection. transport, relaxation, and recombination.

LEDIAp 13:30-15:00

Wednesday, 24 April

LEDIAp 13:30-15:00

LEDIAp-10

Electronic structures of $\ensuremath{\,{\rm K}\xspace-Ga_2O_3/Al_2O_3}$ superlattices

Takeshi Nishimura¹, Takahiro Kawamura¹, Toru Akiyama¹, Yoshihiro Kangawa² ¹*Mie University*, ²*Kyushu University*

First-principles calculations were used to investigate the superlattice periodic thickness and lattice strain dependences on the electronic structures of κ -Ga₂O₃/Al₂O₃ superlattices. The bandgap and band offset were evaluated by calculating the band structures and density of states.

LEDIAp-11

First-Principles Calculations of Bandgap Control of *K*-Ga₂O₃ by Uniaxial Strain

Takuma Yamashita¹, Takahiro Kawamura¹, Toru Akiyama¹, Yoshihiro Kangawa² ¹*Mie University*, ²*Kyushu University* The effect of strain on the band structure of κ -Ga₂O₃ was investigated using firstprinciples calculations. The results show that the bandoap increased or decreased

depending on strain.

LEDIAp-12

Fabrication and Evaluation of Low-B Composition and High Crystallinity BGaN Neutron Detectors for Nuclear Reactor

Ryohei Kubo¹, Tatsuhiro Sakurai¹, Eito Kokubo², Seiya Kawasaki², Katsuyuki Takagi³, Junichi Nishizawa³, Tetsuichi Kishishita⁴, Yoshinori Sakurai⁵, Hiroshi Yashima⁵, Takahiro Makino⁶, Takeshi Ohshima⁶, Yoshio Honda⁷, Hiroshi Amano⁷, Yoku Inoue¹, Toru Aoki³, Takayuki Nakano^{1,3}

¹Graduate School of Integrated Science and Technology, Shizuoka University, ²Graduate School of Integrated Science and Technology, Nagoya University, ³Research Institute of Electronics, Shizuoka University, ⁴High Energy Accelerator Research Organization (KEK), ⁵Institute for Integrated Radiation and Nuclear Science, Kyoto University, ⁶National Institutes for Quantum Science and Technology (QST), ⁷Institute of Materials and System for Sustainability, Naqoya University

BGaN detectors, which are expected to be used for nuclear instrumentation system, demand high temperature and high radiation tolerance. In this study, BGaN with low B composition and high crystallinity were used to improve the characteristics for high tolerance BGaN detectors. The improved detection properties were confirmed in devices using BGaN with a BN mole fraction of 0.45%.

LEDIAp-13

High temperature and high speed growth of GaN by $\ensuremath{\text{Cl}_2}\xspace$ -based HVPE

Keito Shiroma, Xingxing Pan, Kota Nemoto, Hisashi Murakami

Tokyo University of Agriculture and Technology Fairly high temperature growth of GaN using Cl₂-based HVPE using GaCl was investigated on N-polar GaN. Compared with the distribution of tilt angles of dislocations in conventional HVPE, it was found that the number of dislocations with large tilt angles increased in fairly high temperature HVPE. These results suggest that HVPE of GaN above 1300 °C is essential for reducing dislocations for optoelectronic device applications.

LEDIAp-14

Investigation of conversion efficiency of different Ga oxidants in OVPE-GaN growth

Tsubasa Nakazono¹, Shigeyoshi Usami¹, Masayuki Imanishi¹, Tomoaki Sumi², Junichi Takino², Yoshio Okayama², Mihoko Maruyama², Masashi Yoshimura³, Masahiko Hata⁴, Masashi Isemura⁵, Yusuke Mori¹

¹Grad. School of Eng., Osaka University, Osaka, Japan, ³Panasonic Holdings Corporation, Osaka, Japan, ³ILE, Osaka University, Osaka, Japan, ⁴tochu Plastics Incorporated, Tokyo, Japan, ⁶Sosho-Ohshin Incorporated, Osaka, Japan

We investigated the behavior of N₂O as the gallium oxidants, which has not been explored before, to achieve high partial pressure of Ga₂O for the high-speed OVPE-GaN (gallium nitride) growth.

LEDIAp-15

Vacancies in III-Nitrides (I): Formation under Reconstructed Surfaces

K. Tateyama¹, Y. Kangawa^{1,2}, A. Kusaba^{1,2}, T. Kawamura³ 'Interdisciplinary Graduate School of Engineering Sciences, ²Research Institute for Applied Mechanics, Kyushu University, ³Graduate School of Engineering, Mie University In the CVD growth, vacancies are incorporated from the growth surface. In this presentation, we discuss the stability of them in sub-surface layers under surface reconstructions.

LEDIAp-16

Vacancies in III-Nitrides (II): Diffusion near Hetero Interfaces

R. Shimauchi¹, Y. Kangawa^{1,2}, A. Kusaba^{1,2} ¹Interdisciplinary Graduate School of Engineering Sciences, ²Research Institute for Applied Mechanics, Kyushu University Atomically flat heterointerfaces are required to fabricate high-brightness and longlifetime optical devices such as LEDs and LDs. In this presentation, the deterioration mechanism of sharp heterointerfaces due to vacancy diffusion is discussed.

LEDIAp-17

Homoepitaxial regrowth of AlGaN on chemically mechanically polished AlGaN templates and its application to UV B laser diodes

R. Yamada¹, R. Kondo¹, T. Nishibayashi¹, Y. Imoto¹, T. Saito¹, S. Maruyama¹, R. Miyake¹, Y. Sasaki¹, S. Iwayama¹, M. Iwaya¹, T. Takeuchi¹, S. Kamiyama¹, H. Miyake²

¹Meijo Univ., ²Mie Univ. A chemically mechanically polishing of AlGaN was investigated. AlGaN was re grown on the polished templates and applied to UV B laser diodes. This method had a clear effect of reducing hillock and successfully

LEDIAp-18

achieved oscillation at RT.

RF-MBE growth of AlGaN on lowdislocation-density AlN template substrates

R. Kasai¹, R. Tanaka¹, M. Deura², M. Urushiyama³, R. Akaike³, T. Nakamura^{3,4} ¹Col. of Sci. & Eng., ²R-GIRO, Ritsumeikan Univ., ³Grad. Sch. of Eng., ⁴MRPCO, Mie Univ. We investigated growth temperature dependence of crystal properties of AlGaN films grown on low-dislocation-density AIN template substrates using RF-MBE. Crystal coherency improved at higher temperature while the Al content was almost constant.

OWPTp-01

Successive Positioning and Attitude Determination of Solar Cell by Differential Absorption Image Sensor for OWPT

Kaoru Asaba, Tomoyuki Miyamoto *Tokyo Institute of Technology*

In an OWPT system, the position, and attitude of the photovoltaic device should be tracked from the light source. The authors proposed a robust PV detection, positioning, and attitude determination method using a differential absorption image combined with the stereo imagery technique. This study reports the achievements of its successive positioning and attitude determination.

OWPTp-02

Improvement of communication quality by adaptive optics using Convolutional Neural Network Monami Teranishi, Kayo Ogawa Japan Women's University

In this study, we investigate the improvement of communication quality by adaptive optics using convolutional neural networks (CNN). The CNN predicts turbulent phase distribution from intensity distribution images after atmospheric turbulence. This conjugate image was then used as a compensation filter. The results show that SI is reduced, BER characteristics are improved, and communication quality is improved.

OWPTp-03

Design and Analysis of Optical Transmitter and Receiver Modules for Inter-Satellite Link Application

Kuan-Ming Cheng¹, Tsu-Hsin Wu¹, TengYao Yang¹, Chun-Yen ChLin¹, Lan-Yin Chen¹, Yu-Ting Lai¹, Chien-Hung Yeh¹, Ching-Wei Chen², Liang-Tang Chen² *¹Feng Chia University, ²Taiwan Space Agency* (*TASA*)

In this work, an optical communication terminal (0CT) with corresponding transmitter (Tx) and receiver (Rx) modules is designed for optical inter-satellite link (0ISL) in space. Here, 1.25 to 10 Gbit/s on-off keying (00K) modulation rates are reached for 0ISL connection. To reach free space transmission length of >2500 km, the corresponding power budget of 0CT is executed and analyzed.

OWPTp-04

Power over Fiber Based on Wavelength Division Multiplexing in Multimode Fibers

Yao Guo¹, Yuemei Li¹, Ziyang Xiao², Dehua Chen¹, Zhiguo Zhang¹ *'State Key Lab of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, ²State Grid Jiangxi Information and Telecommunication Branch*

A power-over-fiber scheme based on wavelength division multiplexing in MMFs is proposed, and up to 23.57 W of power transmission with good beam transmission quality is implemented, which is 6.6 times compared to SMF.

OWPTp-05

OWPTp 13:30-15:00

Efficient Power Supply Sequencing Algorithm and Experimental Validation for Numerous Small IoT terminals using OWPT

Takuto Mizutani, Tomoyuki Miyamoto Tokyo Institute of Technology

The IoT utilizes a vast number of terminals, and OWPT as a power supply method will become the most important method for stable continuous operation of all terminals. For efficient configuration operation of the system, numerical simulations was re performed for establishment of a power supply order algorithm. As a result, many terminals can be operated stably by switching the power supply order when fully charged with sufficient OWPT supply power.

OWPTp-06

Beam Shape Control System for Wide Angle Oblique Beam Irradiation in Optical Wireless Power Transmission

Kenta Moriyama, Kaoru Asaba, Tomoyuki Miyamoto Tokyo Institute of Technology

We used a lens system composed of two pairs of cylindrical lenses for beam shaping and constructed the numerical model that connects the lens system's parameter and output beam characteristics. With this model, numerical control of the beam shape is confirmed.

OWPTp-07

Extending the Flight Range of OWPT Dynamic Charged Micro-drones Based on Effective Use of Optical Beams Tomoya Watamura, Takuo Nagasaka,

Tomoyuk Miyamoto Tomoyuk Miyamoto Tokyo Institute of Technology For unlimited flight time of micro-drones, dynamic charging by optical wireless power transmission is promising. By analyzing the effect of beam shape on the power characteristics and optimizing the lens configuration, a vertical flight of up to 95 cm was achieved with a 30 W VCSEL array output.

0WPTp-08

Laser irradiation position dependence of conversion efficiency of CIGS solar cells

Shuntaro Fujji¹, Shunsuke Shibui¹, Moeka Chiba¹, Hironori Komaki², Hiroaki Nakamura², Hiroshi Tomita², Takato Ishiuchi², Shiro Uchida¹ '*Chiba Institute of Technology, ²Idemitsu Kosan Co., Ltd.*

We investigated the conversion efficiency of the CIGS cell with two subcells under 1064 nm laser irradiation, changing the laser beam position. The beam position control was found to be significant for this CIGS cell.

OWPTp-09

Improvement of Power Conversion Efficiency under High Intensity Laser Irradiation Using Thick Gold Plating Takaya Oshimo¹, Yuga Motomura¹,

Yukiko Suzuki², Natsuha Ochiai², Kazuto Kashiwakura², Youhei Toriumi², Kensuke Nishioka¹, Masakazu Arai¹ 'Univ. of Miyazaki, ²NTT Space Environment and Energy Laboratories

We characterized InGaAsP solar cell devices using electrolytic gold plating as surface electrode under 1064 nm laser irradiation. The increase in the electrode thickness was confirmed to reduce the deterioration of the fill factor and improve the power conversion efficiency under high laser power irradiation.

Thursday, 25 April

ALPSp2 10:30-12:00

ALPSp2-01

Transparent Ga_2O_3 and $Gd_3Ga_3O_{12}$ thick films prepared by laser-assisted chemical vapor deposition and their optical properties

Terumasa Oga, Akihiko Ito

Yokohama National University Ga_2O_3 and $Gd_3Ga_5O_{12}$ transparent thick films were prepared on c-cut sapphire and $Y_3Al_5O_{12}$ single crystal substrates using laser-assisted chemical vapor deposition method, respectively.

ALPSp2-02

Highly adaptive dual-purpose fiber laser based on manganese dioxide saturable absorber

Xinhe Dou, Zhiguo Lv

Inner Mongolia University We explored a novel MnO₂ ultrafast photonic device, and used it as a modulation device to achieve Q-switched pulsed operation in a wide input power range and a ultrashort pulse generation with 85.7 dB SNR.

ALPSp2-03

Pulse evolution using nonlinear polarization evolution in polarization maintaining fiber

Xiang Li, Zhiguo Lv

Inner Mongolia University

We have realized the bound state phenomenon at 1.5μ m for the first time through the fully polarization-maintaining nonlinear polarization evolution technique. By changing the distance of pulse evolution, the phenomenon of noise-like is also realized.

ALPSp2-04

Ultrafast optical nonlinearity in Hydrazone

Sharafudeen Kaniyarakkal Naduvil Valappil¹, Vijayakumar S. Nair²,

Shiju Edappadikkunnummal³ ¹Kuwait College of Science and Technology, ²NSSC Pandalam, Kerala University, ³Chinmaya Vishwavidyapeeth Institute of Science and Technology

We have measured the femtosecond third-order nonlinear optical response $\chi^{(3)}$ in a novel class of *n*-conjugated dicarbohydrazone using *z*-scan and optical limiting techniques. In off-resonance conditions at 800 nm we found three photon absorption coefficients and nonlinear refraction coefficients values which are significant. This material is an excellent candidate for nonlinear optical devices in the lower optical frequency range.

ALPSp2-05

Luminescence properties of Ce³⁺doped lutetium silicate thick films prepared using laser-assisted chemical vapor deposition

Airi Shikichi, Akihiko Ito Yokohama National University

We prepared Ce³⁺-doped lutetium silicate films on quartz glass using laser-assisted chemical vapor deposition and investigated its microstructure and luminescence properties.

ALPSp2-06

SESAM mode-locked Tm,Ho:Ca(Gd,Y) Al04 laser at 2130 nm Zhang-Lang Lin^{1,2} Valentin Petrov¹

Zhang-Lang Lin^{1,2}, Valentin Petrov¹, Uwe Griebner¹, Ge Zhang², Peixiong Zhang³, Zhen Li³, Zhenqiang Chen³, Xavier Mateos⁴, Pavel Loiko⁵, Weidong Chen^{1,2} ²¹ *Max Bom Institute for Nonlinear Optics and Ultrafast Spectroscopy, ²Fujian Institute of Research on the Structure of Matter, ³Jinan University, ⁴Universitat Rovira I Virgili, ⁵Université de Caen We demonstrate a SESAM mode-locked Tm,Ho:Ca(Gd, Y)AIO4 Iaser delivering soliton*

pulses as short as 114 fs at 2130 nm with an average output power of 142 mW at a pulse repetition rate of ~80.5 MHz.

ALPSp2-07

Optimization of Effective Nonlinearity in Trigonal BaGa₂GeS₆

Kentaro Miyata¹, Kiyoshi Kato^{2,3}, Nobuhiro Umemura², Valentin Petrov⁴ '*RiKEN*, ²Chitose Institute of Science and Technology, ³Okamoto Optics, Inc, ⁴Max-Born-Institute for Nonlinear Optics and Ultrafast Spectroscopy

The optimum propagation directions for maximum effective nonlinearity in the trigonal BaGa₂GeS₆ nonlinear crystal are determined based on magnitude and relative sign of its nonlinear coefficients with proper octant assignment.

ALPSp2-08

Synthesis and emission properties of fast near-infrared phosphor Eu:CaSc₂O₄

Shohei Kodama, Tomoki Saito, Ikuo Yanase, Hiroaki Takeda

Saitama University

Fast near-infrared phosphor Eu:CaSc₂O₄ was synthesized and evaluated its emission properties. Eu:CaSc₂O₄ exhibited the broad near-infrared emission around 750 nm with the outstandingly fast decay of 3.10 ns (19%) and 16.3 ns (81%).

ALPSp2-09

Optical and Thermo-Mechanical Properties of Vanadium Dioxide Thin Films with Different Tungsten Doped Contents

Chuen-Lin Tien, Min-Yang Lu, Chun-Yu Chiang Feng Chia University Tungsten-doped vanadium dioxide thin films

variation doubte thin hints were deposited by electron beam evaporation with ion beam-assisted deposition. The optical and thermo-mechanical properties of VO₂ films were investigated. The results show the CTE and biaxial modulus are obtained.

ALPSp2-10

Oscillation of 122 nm laser by means of TCE Ne-like Al ion scheme

Yuito Nishii¹, Keishin Watanabe¹, Tomoyuki Johzaki^{1,2}, Jiahao Wang¹, Kotaro Yamasaki¹, Shiniti Namba¹ *'Hiroshima University, ²Osaka University* We have developed a 122 nm vacuum ultraviolet (VUV) laser oscillation by using the transient electron collisional excitation scheme(TCE) scheme in aluminium laser produced plasmas.

ALPSp2-11

Measurement of Sn ion energy spectrum and estimation of Sn cloud density distribution for lifetime improvement of collector mirror in EUV light source

Yoshiyuki Honda¹, Shinji Nagal¹, Tomoyoshi Toida¹, Hirokazu Hosoda¹, Takeru Niinuma², Masaki Kume², Hiroki Morita², Takeshi Higashiguchi² ¹ Gigaphoton Inc., ²Utsunomiya Univ.

We measured the Sn ion energy spectrum and estimated of Sn cloud density distribution. It was estimated that high density Sn remained in the Sn cloud regardless of Sn DL size or Sn cloud size.

ALPSp2-12

Characteristics of high-energy ion debris from a laser-produced Gd plasma B-EUV source

Takeru Niinuma¹, Masaki Kume¹, Tsukasa Sugiura¹, Hiroki Morita¹, Shinichi Namba², Takeshi Higashiguchi¹ *¹Utsunomiya University, ²Hiroshima University* A laser-produced Gd plasma has been proposed as a next generation of lithography light source (B-EUV source). We observed the charge-separated energy spectra and the angular distribution of high-energy ion debris from a B-EUV source.

ALPSp2-13

EUV conversion efficiency of multiple laser irradiation

Tsukasa Sugiura¹, Hayato Yazawa¹, Hiroki Morita¹, Shinichi Namba², Takeshi Higashiguchi¹

¹*Utsunomiya University,* ²*Hiroshima University* The conversion efficiency of EUV was measured when irradiating each of the lasers from one to five lasers. When multiple lasers were irradiated, the conversion efficiency increased more than only one laser irradiation.

ALPSp2-14

Characteristics of EUV and energetic ion emission by a double-pulse laser scheme

Hayato Yazawa¹, Tsukasa Sugiura¹, Hiroki Morita¹, Shinichi Namba², Takeshi Higashiguchi¹

¹Utsunomiya University, ²Hiroshima University We have measured energetic ion and EUV properties with a new irradiation scheme. This scheme achieved spatial separation of energetic ions and EUV, and spectral purity was improved 40% compared to single pulse laser scheme.

ALPSp2-15

Development of mid-infrared laser by optical parametric amplification using near-infrared laser as pumping

Ryoma Sato¹, Ayaka Ogiwara¹, Hiroki Morita¹, Kazuyuki Sakaue², Takeshi Higashiguchi¹ ¹Utsunomiya University, ²The University of Tokyo

We develop a 3- μ m laser through an OPA system converted from a laser of 1- μ m wavelength. The output power was 10 mW. The central wavelength of the idler light was 3070 nm.

ALPSp2-16

Measurement of electron energy spectra in BISER harmonic radiation-Xe gas interaction

Shinichi Namba¹, A.S Pirozhkov², Masaki Kando²

bottle electron spectrometer.

¹*Hiroshima University,* ²*National Institutes for Quantum Science and Technology* Xe atom was irradiated with BISER harmonic radiation emitted from a relativistic laser plasma. Photoelectron and Auger electron spectra attributed to Xe 4d innershell ionization was measured by a magnetic

ALPSp2-17

Generation of high-order harmonics by using long interaction He gas tube

Shinichi Namba¹, Jozsef Seres², E. Seres², Carles Serrat³, D.H. Dinh⁴, Noboru Hasegawa⁴, Makoto Ishino⁴, T. Niinuma^{4,5}, M. Kume⁵, Kotaro Yamasak¹, Takeshi Higashiguch¹⁵ ¹Hiroshima University, ²Vienna University of Technology, ³Polytechnic University of Catalonia, ⁴National Institutes for Quantum Science and Technology, ⁵Utsunomiya University

High-order harmonics around 13.5 nm was generated by interaction of long He gas medium with TiS laser pulse. The spectral shift and split were observed by spectroscopic measurements.

ALPSp2-18

Towards the Development of High-Power EUV Light Source Based on Observation of Laser-Produced Sn Plasma Dynamics

Daisuke Nakamura¹, Yiming Pan², Kentaro Tomita², Yukihiko Yamagata¹, Kazunori Koga¹, Hakaru Mizoguchi¹, Masaharu Shiratani¹

¹Kyushu University, ²Hokkaido University For the development of high-power EUV light sources by laser-produced Sn plasma, we have visualized Sn ion and neutral atom distributions. Furthermore, the plasma dynamics were successfully observed by the collective Thomson scattering technique.

ALPSp2-19

Experimental study on properties of relativistic Coulomb fields

Masato Ota^{1,2,3}, Koichi Kan^{4,5}, Youwei Wang^{1,6}, Verdad C Agulto¹, Yasunobu Arikawa¹, Makoto R. Asakawa⁶, Youichi Sakawa¹, Tatsunosuke Matsui⁷, Makoto Nakajima¹ 'Institute of Laser Engineering, Osaka University, ²National Institute for Fusion Science, ³The Graduate University for Advanced Studies, SOKENDAI, ⁴Institute of Scientific and Industrial Research (SANKEN), Osaka University, ⁵National Institutes for Quantum Science and Technology, ⁶Faculty of Engineering Science, Kansai University, ⁷Department of Electrical and Electronic Engineering, Mie University

Properties of relativistic Coulomb fields around a high-energy electron beam were studied by electro-optic sampling with echelon-based single-shot measurement. The application of the ultrafast electric-field diagnostics will be a platform of the high-energy physics.

Thursday, 25 April

ALPSp2 10:30-12:00

ALPSp2-20

Highly efficient THz wave using chaos supremacy

Fumiyoshi Kuwashima¹, Mona Jarrahi², Semih Cakmakyapan², Kenji Wada³, Masanobu Haraguchi⁴, Yuki Kawakami⁵, Takeshi Moriyasu⁶, Osamu Morikawa⁷, Kazuyoshi Kurihara⁸, Hideaki Kitahara⁹, Takashi Furuya⁹, Makoto Nakajima¹⁰, Masahiko Tani⁹

¹Fukkul Univ. of Tech., ²University of California Los Angeles, ³Osaka Metropolitan University, ⁴Tokushima University, ⁵National Institute of Technology (KOSEN), Fukui College, ⁶Faculty of Engineering, University of Fukui, ⁷Chair of Liberal Arts, Japan Coast Guard Academy, ⁸School of Education., University of Fukui, ⁹Research Center for Development of Far-Infrared Region, University of Fukui, ¹⁰Osaka Univ.

Highly efficient THz wave using chaotically oscillating laser diode is investigated. Compared it to conventional continuous wave multi-mode semiconductor laser excitation system, about ten times output power is increased because of chaos supremacy.

ALPSp2-21

Enhancements of UV Emissions from Ga₂O₃ Nano-Hemispherical Structures by Surface Plasmon Resonance

Kai Funato, Shogo Tokimori, Tomoya Kubota, Tetsuya Matsuyama, Kenji Wada, Koichi Okamoto

Osaka Metropolitan University

We have developed Ga₂O₃ nano-hemisphere (NH) to enhance photoluminescence (PL) in the ultraviolet region and increased the PL intensities by optimizing annealing conditions. Furthermore, the surface plasmon resonance with Al film enhanced the UV emissions.

ALPSp2-22

Photoluminescence Enhancement from CdSe/ZnS Quantum Dots through Surface Plasmon Resonance using Ag Nanostructures Fabricated by Thermal Annealing

Tomohiko Niwa, Tatsuya Tanoue, Tetsuya Matsuyama, Kenji Wada, Koichi Okamoto

Osaka Metropolitan University

We achieved photoluminescence (PL) enhancement from CdSe/ZnS Quantum Dots (DDs) by using Surface Plasmon Resonance (SPR) of Ag nanostructures fabricated by thermal annealing, and show the potential to realize highly efficient RGB.

ALPSp2-23

Multicolor 3D metasurface holography by time-division method

Junpei Beppu, Tamaki Onozawa, Masakazu Yamaguchi, Kentaro Iwami *Tokyo University of Agriculture and Technology* This study achieved the multicolor 3D metasurface holography, using a timedivision method. Holograms of red, green, and blue channels of tha target image were fabricated and overlayed at 5.19 fps.

ALPSp2-24

Polarization Sensitive Photoresponse in a Gap-Plasmon-Enhanced NbN Superconducting Photon Detector Feng-Yang Tsai^{1,2}, Jing-Wei Yang¹, Jia-Wern Chen¹, Yu-Jung Lu^{1,2} ¹Academia Sinica, ²National Taiwan University We designed and demonstrated a polarization-sensitive plasmonic superconducting single-photon detector (SSPD) using NbN superconducting microwire coupled with silver nanorod nanoresonators. The plasmonic SSPD exhibit a nonlinear photoresponse in the visible range operated at 13 K via gap plasmon resonance.

ALPSp2-25

Room-Temperature Lasing from Quasi-2D Ruddlesden-Popper Perovskites Coupled with Plasmonic Lattices

Lin-Chyn Yuan^{1,2}, Xing-Hao Lee^{1,2}, Jia-Wern Chen², Chiung-Han Chen³, Yen-Yu Wang², Chih-Wei Chu¹, Yang-Fang Chen¹, Chu-Chen Chueh³, Yu-Jung Lu^{1,2}

¹Department of Physics, National Taiwan University, Taipei, Taiwan, ²Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan, ³Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan

In this work, we demonstrated single mode lasing in quasi-2D Ruddlesden-Popper perovskites (PEA-CSn-,PbnBf_{3n+1}, n=5) combined with Al-based plasmonic lattices at room temperature by the hybrid plasmonic surface lattice resonance to achieve population inversion.

ALPSp2-26

Laser-mediated nanoparticle delivery to achieve cutaneous siRNA targeting for mitigating psoriasiform inflammation

Jia-You Fang¹, Woan-Ruoh Lee², Chien-Yu Lin¹ ¹Chang Gung University, ²Taipei Medical University

Herein, we developed a delivery system for siRNA based on poly(lactic-co-glycolic acid) (PLGA) nanoparticles and combined this system with ablative laser to promote skin permeation. The siRNA absorption enhancement was compared by two laser modalities: fractional CO₂ laser and fully-ablative Er:YAG laser. Topical application of fractional laser-assisted nanoparticle delivery on mice resulted in 56% of IL-6 knockdown.

ALPSp2-27

Single fiber endoscopic imaging based on differential ghost imaging

Toshitaka Wakayama¹, Yudai Higuchi¹, Rikuto Kondo¹, Yasuhiro Mizutani², Takeshi Higashiguchi³ ¹Saitama Medical University, ²Osaka University,

³Utsunomiya University We demonstrate a single fiber endoscopic imaging based on differential ghost imaging. We achieved an endoscopic fiber imaging with a spatial resolution of 0.05 mm using 30,000 speckle patterns recorded.

ALPSp2-28

Laser-assisted nanoparticle permeation for promoting the skin absorption and penetration depth of retinoic acid

Tsong-Long Hwang¹, Woan-Ruoh Lee², Pei-Chi Lo¹ ¹Chang Gung University of Science and

Technology, ²*Taipel Medical University* Two delivery approaches, namely nanoparticles and laser ablation, were combined to improve RA's absorption

efficacy and safety. The nanoparticle absorption enhancement by the lasers was compared between full-ablative (Er:YAG) and fractional (CO_2) modalities. Our results indicated that the laser-mediated nanoparticle delivery provided an efficient and safe use for treating photoaging.

ALPSp2-29

Post-irradiation recovery time strongly influences the skin barrier function and drug absorption after fractional CO₂ laser treatment

Chi-Feng Hung¹, En-Li Chen², Jia-You Fang² ¹Fu Jen Catholic University, ²Chang Gung University

The present study aimed to explore the influence of recovery time after fractional CO₂ laser irradiation on the enhancement of drug penetration. The fractional laser produced microchannels of about 150 μ m in diameter and 25 μ m in depth that were surrounded with thermal coagulation. The bright-field imaging indicated that the micropores were progressively closed during the recovery period but had not completely closed even after a 16-h recovery.

ALPSp2-30

Displacement Characteristics of Human Finger Skin by Mid-Air Ultrasonic Haptics

Mifuka Nakamura, Nobuya Sato, Daisuke Mizushima Aichi institute of Technology In this study, skin displacements characteristics were measured by the Mid-air ultrasonic haptics device. Since the results are similar to those of imitation skin material, we can observe skin displacement during tactile presentation.

ALPSp2-31

An Integrating Sphere Spectrophotometer Prototype

Angelica Hernandez Rayas¹, Eduardo Montes Ramirez¹, Teodoro Cordova Fraga¹, Rafael Guzman Cabrera², Erick Sarmiento Gomez¹ ¹Division of Sciences and Engineering, University of Guanajuato Campus León., ²Engineering Division, University of Guanajuato Irapuato-Salamanca Campus. Carretera Salamanca - Valle de Santiago

In recent years, the need to develop portable and accessible spectroscopy equipment in the qualitative and quantitative analysis of samples has reduced real-time analysis. The objective is to design and manufacture a prototype of a portable spectrophotometer with an integrating sphere, characterizing the geometry and radiance power simulation.

ALPSp2-32

Investigation of elastography for soft tissue by laser-induced photo thermal elastic wave

Katsuhiro Mikami¹, Tasuku Furube², Takuto Hatakeyama², Mitsutaka Nemoto¹, Satoru Matsuda², Daisuke Nakashima² ¹*Kindai University,* ²*Keio University*

An area called physical oncology has been proposed. In this paper, we report a demonstration of stiffness measurement with phantoms by laser-induced photoacoustic thermal elastic wave in the audible frequency range.

ALPSp2-33

Clinical Study Analyzing Peri-Wound Blood Circulation Using Laser Blood Circulation Imaging System

Yaoyuan Chang^{1,3}, Yen-Ren Lin^{1,2,3}, Chu-Chung Chu^{1,3}

¹CHANGHUA CHRISTIAN HOSPITAL, ²National Yang Ming Chiao Tung University, ³Chung Shan Medical University

Laser Speckle Contrast Imaging(LSCI) presents a paradigm shift in wound care, offering a more efficient and data-driven approach to enhance patient outcomes.

ALPSp2-34

Characteristics of 2 um OCT based on Tm-Ho co-doped fiber laser supercontinuum

Futa Osaki, Rongjie Zhang, Shotaro Kitajima, Norihiko Nishizawa Nagoya University

We developed optical coherence tomography (OCT) using supercontinuum in 2 um wavelength band, and investigated wavelength dependence of OCT imaging at 0.9, 1.7, and 2 um wavelength bands for some samples, especially for human fingers.

ALPSp2-35

Transportable dual-comb spectroscopy system for gas monitoring Takanori Okada, Masao Fujino,

Nobutaka Takahashi, Takao Sakurai, Shin Masuda

Advantest Laboratories Ltd. We demonstrate an environmentally stable transportable dual-comb spectroscopy system consisting of all polarizationmaintaining fibers including mode-locked lasers, detection modules of carrier-envelope offset frequency, and time-domain interference signals.

ALPSp2-36

Development of a Simple and Stable All-Polarization-Maintaining Multi-Comb Source with a Mechanical-Sharing Configuration

Kosei Nagao, Takashi Kato, Akifumi Asahara, Kaoru Minoshima

The University of Electro-Communications We developed a mechanical-sharing and all-polarization-maintaining tri-comb fiber laser. A Simple and stable multi-comb source was achieved with enhanced mechanical sharing condition using three combs with identical cavity configurations.

Thursday, 25 April

ALPSp2 10:30-12:00

ALPSp2-37

152 MHz All-PM Er-doped Figure-9 fiber laser optical frequency comb Sota Sakaguchi, Shotaro Kitajima, Kwangyun Jung, Norihiko Nishizawa

Nagoya University A 152 MHz all-PM Figure-9 fiber laser optical frequency comb was developed. Stable long-term operation was achieved, and measured in-loop integrated phase noise and standard deviation of fcco were 72 mrad and 0.457 mHz, respectively.

ALPSp2-38

Toward Realization of a 30 GHz-Class, High Repetition Rate, Visible Broadband Optical Frequency Comb

Tadashi Matsumoto^{1,2}, Sho Okubo², Ken Kashiwagi², Yoshiaki Nakajima¹, Hajime Inaba²

¹Toho University, ²NMIJ/AIST

We have successfully expanded the 6.8 GHz optical frequency comb to cover the entire visible region by using a high-power Erbium-Doped Fiber Amplifier. We plan to demonstrate the capability at 30 GHz in the future.

ALPSp2-39

Development of a mechanically sharing dual-comb fiber laser with a repetition rate of 100 MHz

Takumi Yumoto¹, Ryusei Uchiyama¹, Takuma Yoshioka¹, Wataru Kokuyama², Yu Tokizane³, Takeshi Yasui³, Shinichi Matsubara⁴, Yoshiaki Nakajima¹

¹*Toho University,* ²*NMIJ/AIST,* ³*pLED,* ⁴*JASRI* We have developed an all-polarization-

maintaining, mechanically sharing dual-comb fiber laser with a 100 MHz repetition frequency, aimed at expanding the measurable bandwidth in dual-comb spectroscopy.

ALPSp2-40

Development of Broadband Fiber-Based Frequency Comb Source Assisted by Intracavity Nonlinear Optical Effects

Ryusei Uchiyama, Tadashi Matsumoto, Takumi Yumoto, Yoshiaki Nakajima *Toho University*

In this study, we generated a broadband optical comb within a fiber laser resonator employing a highly non-linear optical fiber. The outcome was a wideband spectrum with a 10 dB width spanning 114 nm.

ALPSp2-41

Dispersion engineering of high-Q crystalline microresonators for microcomb generation beyond a telecom C-band

Ryomei Takabayashi¹, Hikaru Kodama², Yasuhiro Kakinuma², Takasumi Tanabe¹, Shun Fujij³

¹Department of Electronics and Electrical Engineering, Faculty of Science and Technology, Keio University, ²Department of System Design Engineering, Faculty of Science and Technology, Keio University, ³Department of Physics, Faculty of Science and Technology, Keio University

We propose a strategy of dispersion engineering of microresonator towards mode-locked optical frequency comb generation in near infrared and mid-infrared wavelength regime. We reveal the optimal structure to realize appropriate anomalous dispersion.

ALPSp2-42

Generation of THz Pulse using a Mechanically Stabilized Dual-Comb Fiber Laser

Takumi Yumoto¹, Ryusei Uchiyama¹, Takumi Yumoto¹, Ryusei Uchiyama¹, Takuma Yoshioka¹, Wataru Kokuyama², Yu Tokizane³, Takeshi Yasui³, Shinichi Matsubara⁴, Yoshiaki Nakajima¹ ¹ Toho University, ²National Metrology Institute of Japan, ³Institute of Post-LED Photonics, ⁴ Japan Synchrotron Radiation Reserarch Institute

We developed an all-polarizationmaintaining dual-comb fiber laser. Using this laser, we successfully generated THz pulses. We were able to obtain a THz spectrum by integrating these generated THz pulses and subsequently performing a Fourier transformation.

ALPSp2-43

Ultra-stable DFBLD wavelength stabilization for error-free BPSK-QKD

You-Xin Wang¹, Kuan-Wei Hu¹, Chih-Hsien Cheng², Atsushi Matsumoto², Kouichi Akahane², Gong-Ru Lin^{1,3} ¹National Taiwan University, ²National Institute of Information and Communications Technology, ³NTU-Tektronix Joint Research Center, Tektronix Inc. and National Taiwan University A DFBLD with <±0.0001°C feedback control

and <0.1pm ultra-stable wavelength stability is demonstrated for delayinterferometric BPSK-QKD decoding with <0.5% bit-amplitude fluctuation and error-free BER of <8.6×10⁻¹⁰.

ALPSp2-44

A theory about left slit residual light causing magical bright pattern in double slit interference experiment Haiiiang Liu

Beijing universitu of technology

In the double slit interference experiment, light moves forward in a flat elliptical spiral, The photons at the edges break and escape, generating a bright pattern forward. After blocking the right slit, residual light in the left slit will cause a bright offset pattern. and a new formula for the spacing between patterns.

ALPSp2-45

Ultra-stable Control of Single-photon Transmitter and Decoder for Differential Phase-Shifted Quantum-Key Distribution

Shih-Chang Hsu¹, You-Cheng Lin¹, Kuan-Wei Hu¹, Chih-Hsien Cheng², Atsushi Matsumoto², Kouichi Akahane², Gong-Ru Lin^{1,3} 'National Taiwan University, ²National

Institute of Information and Communications Technology, ³NTU-Tektronix Joint Research Center, Tektronix Inc. and National Taiwan University

Ultra-stable control on bias of Di/i<10⁻⁴ and temperature of DT/T<7'10⁻⁵ for single-photon transmitter and stabilized isothermal control of 1-bit-delay interferometer enables secure quantum-key transmission with erroneous rate of <3% under ultra-low wavelength and power perturbations of D λ / λ <10⁻⁶ and DP/P<10⁻⁴.

ALPSp2-46

Polarization-insensitive quantum frequency conversion module based on the Mach-Zehnder interferometer Shinichi Takenaka¹, Shoichi Murakami^{1,2}, Toshiki Kobayashi^{1,2}, Takashi Yamamoto^{1,2},

Toshiki Kobayashi^{1,2}, Takashi Yamamoto^{1,2}, Rikizo Ikuta^{1,2} ¹*Graduate School of Engineering Science,*

Osaka University, ²Center for Quantum Information and Quantum Biology, Osaka University

We report a fiber-pigtailed quantum frequency conversion module based on the Mach-Zender interferometer. The experimental results show that the module works well for arbitrary polarization state of light with high fidelity.

ALPSp2-47

Rabi Oscillations of Higher-Order Spin States in Quantum Disks using Higher-Order Photons with Resonant Frequencies

Kaito Terashima, Ken Morita Chiba University Rabi oscillations between higher-order excited states and ground states in semiconductor quantum disks are calculated. The results suggest that the higher-order states with OAM can be manipulated by irradiating higher-order photons that possess OAM.

ALPSp2-48

Polarization-entangled photon pair generation using tandem type-II QPM PPLN waveguide

Shunsuke Hiraoka¹, Shoichi Murakami^{1,2}, Daiki Hara¹, Toshiki Kobayashi^{1,2}, Fumihiro China³, Shigehito Miki^{3,4}, Hirotaka Terai³, Tsuyoshi Kodama^{5,5}, Tsuneaki Sawaya⁵, Akihiko Ohtomo⁵, Hideki Shimoi⁵, Rikizo Ikuta^{1,2}, Takashi Yamamoto^{1,2} *Graduate School of Engineering Science, Osaka University, ²Center for Quantum Information and Quantum Biology, Osaka University, ³Advanced ICT Research Institute, National Institute of Information and Communications Technology, ⁴Graduate School of Engineering, Kobe University, ⁵Hamamatsu Photonics K.K.*

We present a compact polarizationentangled photon pair source at wavelengths of 1540 nm and 1582 nm using a tandem type-II QPM PPLN waveguide.

ALPSp2-49

From Beam to Bedrock: The Application of High-Power Lasers in Subsurface

Damian Pablo San Roman Alerigi, Sameeh I Batarseh, Ahmad A Alrashed, Safiyah Alghamdi

EXPEC Advanced Research Center, Aramco The first deployment of a high-power laser tool for subsurface environments is a crucial milestone in enabling photonic applications for energy extraction and exploration. It provided insights for advancements in optics, optomechanics, and energy conveyance.

ALPSp2-50

On the transmission of multi-kilowatt near-infrared lasers to subsurface targets

Damian Pablo San Roman Alerigi, Sameeh I Batarseh

EXPEC Advanced Research Center, Aramco Applying high-power lasers in the subsurface demands advancements in long-haul laser delivery fibers. However, this task presents unique challenges due to material limitations, non-linear scattering effects, and environmental factors.

Thursday, 25 April

BFSSp 10:30-12:00

BFSSp-01

The aim of Business and Finance for Sustainable Society - towards the expansion of the photonics industry -

Ryohei Hanayama, Rie H. Kang GPI

This is a brief introduction to the brand-new conference on Business and Finance for Sustainable Society (BFSS) towards the expansion of the photonics industry.

SLPCp-01

Compression Properties of 3D-Printed Structures

Fan-Chun Hsieh¹, Chien-Yao Huang², Jun-Cheng Chen², Chin-Hao Lin¹, Tai-Jung Li¹, Min-Kuei Chen¹ *'National Chin-YI University of Technology,* ²*Taiwan Instrument Research Institute, National Applied Research Laboratories* 3D printing has been utilized to create lightweight structures to enhance toughness. This study examine the compression properties of honeycomb and center-shaped structures by using digital light processing. Our findings indicate that both the honeycomb and center-shaped structures exhibit low compressive strength when compared to the combination of center and

absorption.

Influence of Processing Parameters on Microstructure and Mechanical Properties of a Ti-6AI-4V Alloy Additively Manufactured by Pulsed Laser Powder Bed Fusion

honeycomb structures. This study provides

valuable insights for the application of

Naoya Nishikawa¹, Yuta Mizuguchi², Takahiro Kunimine¹, Yuji Sato², Masahiro Tsukamoto²

¹Kanazawa University, ²Osaka University We investigate the possibility of controlling processing heat input and controlling microstructure of the additively manufactured Ti-6AI-4V alloy by leveraging pulsed LB-PBF.

SLPCp-03

Temperature Gradient Measurement and Microstructural Characterization of Rapidly Solidfied HS 6-5-2 High-Speed Steel by Multi-Beam Laser Melting

Masamitsu Takahashi¹,

Kholqillah Ardhian Ilman¹, Yorihiro Yamashita², Takahiro Kunimine¹

¹Kanazawa University, ²Ishikawa College This study explored the processing of single beads composed of ISO HS 6-5-2 highspeed steel (HSS) using the multi-beam laser melting method and a modified multi-beam laser focusing technique. Especially, the effects of multi-beam laser focusing position and laser power on rapidly solidified microstructure and temperature variation of the ISO HS 6-5-2 HSS during the laser melting process were investigated.

SLPCp-04

Size effect of SiC nanoparticles on SiC patterning properties in green femtosecond laser direct writing

Kairi Nishisaka¹, Amarsaikhan Khaliun¹, Masashi Watanabe², Yoshiyuki Imai², Shohei Ueta², Xing Yan², Mizue Mizoshiri¹ ¹Nagaoka University of Technology, ²Japan Atomic Energy Agency

The size effect of SiC nanoparticles on femtosecond laser SiC patterning was investigated using different sizes of SiC nanoparticles. Finer particles with ~18 nm in diameter achieved the high resolution and less oxidization.

SLPCp-05

Fabrication of Ti-6AI-4V using selective laser melting with blue diode laser

Koki Maeda¹, Ryoga Ueda¹, Keisuke Takenaka² Yuji Sato², Minoru Yoshida¹, Hitoshi Nakano¹, Masahiro Tsukamoto²

¹Graduate School of Science and Engineering, Kindai University, ²Joining and Welding Research Institute, Osaka University

Blue diode lasers have high optical absorption for many metallic materials and higher photoelectric conversion efficiency than fiber lasers. We have developed a 200 W high-brightness blue diode laser and have developed a selective laser melting method using this laser. In this study, we attempted to shape Ti-6AI-4V, which is known as a difficult-to-machine material, using the SLM method equipped with a blue diode laser.

SLPCp-06

Effect of Wavelength on Blue Diode Laser Induced Powder Bed Fusion for 3D Fabrication of Nickel-Based Alloy

Ryoga Ueda¹, Koki Maeda², Keisuke Takenaka³, Eiji Hori³, Norio Yoshida³, Yuji Sato³, Minoru Yoshida¹, Masahiro Tsukamoto³ ¹ Grad. Sch. of Sci.and Eng Kindai University, ²Fac. of Sci.and Eng., Kindai University, ³Joining and Welding Research Institute, Osaka University

3D fabrication of nickel-based alloys was performed using a high-power blue diode laser and compared to a near-infrared laser. Also, the effect of different wavelengths on fabrication was researched.

SLPCp-07

Comparison between Blue and N-IR laser for pure copper layer formation by wire-based laser metal deposition

Satoshi Yoshida¹, Masami Mizutani², Keisuke Takenaka², Yuji Sato², Masahiro Tsukamoto²

¹ Graduate School of Engineering, Osaka University, ² Joining and Welding Research Institute, Osaka University

We formed pure copper layers by Wirebased Laser Metal Deposition. Comparing a blue laser and a near-infrared laser, the forming efficiency using a blue laser was five times higher than using a near-infrared laser.

SLPCp-08

Fabrication of Nickel based alloy by multi-beam LMD method with blue diode lasers

Ryuhei Matsuda¹, Keisuke Takenaka², Yuji Sato², Mitsuhio Kusaba¹, Masahiro Tsukamoto²

¹Osaka Sangyo University, ²Osaka University Inconel 718, a Nickel alloy, was fabricated on a SUS304 substrate using a multi-beam LMD method with two blue diode lasers at a wavelength of 450 nm and a maximum output power of 200 W.

SLPCp-09

Experimental observation of Cu-Zn alloy coating process by multi-beam laser metal deposition using blue diode lasers

Ritsuko Higashino, Yuji Sato, Keisuke Takenaka, Nobuyuki Abe, Masahiro Tsukamoto *Joining and Welding Research Institute, Osaka University* We demonstrated to coat the copper with

zinc to improve discoloration resistance by multi beam LMD using blue diode laser.In order to form copper alloy layer as a diffet@ff 13:30-15:00 to process, it is considered necessary to find optimal conditions such as laser power density, speed and so on.

SLPCp-10

Formation of pure copper layer on aluminum nitride by multi-beam laser cladding with blue diode lasers

Jumpei Tokumoto¹, Keisuke Takenaka¹, Yuji Sato¹, Masahiro Tsukamoto¹, Koji Kobayashi², Hideyo Osana², Koji Tojo³ ¹Joining and Welding Research Institute, Osaka University, ²DOWA POWER DEVICE Co., Ltd., ³SHIMADZU CORPORATION

Copper layer was formed on aluminum nitride by multi-beam laser cladding with blue diode lasers, and the influence of laser irradiation conditions such as the power density, scanning speed and powder feeding rate were investigated.

SLPCp-11

Femtosecond laser processing of polyimide

Masaki Uematsu¹, Saulius Juodkazis², Vygantas Mizeikis¹

¹Shizuoka University, ²Swinburne University of Technology

We report on microfabrication of polyimide using femtosecond laser pulses, and describe the obtained modification of its structural, optical, electrical, and thermal properties of PI. The main processes addressed are fs laser-induced carbonization of polyimide and generation of laser-induced periodic surface structures (LIPSS). Application of these modifications for the fabrication of optical, electronic and thermal devices will be outlined.

SLPCp-12

Estimation of surface roughness for antimicrobial structure evaluation from the reduction in reflectance.

Mikuru Okazaki¹, Masaki Hashida^{1,2}, Satoru Iwamori¹

¹ Tokai University, ²Kyoto University In 2023, it was confirmed that LIPSS formed on stainless steel by YAG laser irradiation suppressed bacterial growth. This shows that structures with antibacterial properties can be formed using lasers. As a method to confirm the microstructure, we focused on a method to determine surface roughness from the reduction of reflectance.

SLPCp 10:30-12:00

Thursday, 25 April

SLPCp 10:30-12:00

SLPCp-13

Cell Cultivation Control of Surface Patterning Using Laser Induced Backward Transfer

Sangwoo Yoon Joohan Kim Seoul National University of Science and Technology

When culturing Staphylococcus aureus on the created surface, the inability of cell to grow well was more pronounced with increasing influence of alumina. Therefore, through patterning using laser-induced backward scattering deposition of alumina and zirconia, selective cell cultivation or proliferation suppression can be controlled.

SLPCp-14

Observation of Phenomena in Laser Ablation Under Liquid with Fine **Bubbles**

Zhen Wei Hsu¹, Hao Wei Du¹, Yuan Jen Chang², Chia Lung Kuo¹ ¹National Yunlin University of Science & Technology, ²National Taipei University of Technology

In this study, we used various liquid with fine bubbles prepared by our home made generator to observe various phenomena of laser ablation.

SLPCp-15

Effect of laser peening on changed acoustic impedance of plasma confinement laver

Miho Tsuyama¹, Yang Zhang¹, Manabu Heya², Hitoshi Nakano¹

¹Kindai University, ²Kindai University In efficient laser peening, a high amplitude shock impulse is necessary. The shock impulse can be increased by confinement of the laser-produced plasma through the acoustic impedance of a plasma confinement layer. To perform efficient laser peening, it is necessary to select a plasma confinement medium with consideration to acoustic impedance. In this study, the effect of laser peening is examined on the acoustic impedance of a plasma confinement medium.

SLPCp-16

Nanosecond double-pulse laser irradiation for efficient laser peening

Akio Geshiro¹, Tomohiro Shimotsuma¹, Miho Tsuyama¹, Manabu Heya², Hitoshi Nakano¹ ¹Faculty of Science and Engineering, Kindai

University, ²Faculty of Engineering, Kindai University

In this study, double-pulsed laser irradiation has been adopted for efficient laser peening. The hardness difference has the dependence on the pre-pulse intensity and is efficient for the delay time of 10 ns. Double-pulsed laser was found to be an effective for laser peening.

OPIC 2024 · 22-26 April, 2024

SLPCp-17

Effects of Multi-Spot Laser Peening on Stainless steel Natsuki Furukawa¹ Megat Adam Bin Megat Harris¹ Taiki Nakayama¹, Kazuma Takakura¹,

Manabu Heya², Hitoshi Nakano¹ ¹Faculty of Science and Engineering, Kindai University, ²Faculty of Engineering, Kindai University

Effects of multi-spot laser peening have been investigated. Evaluation of laser peening performance and laser peening effect were conducted by measuring the magnitude of compressive residual stress. hardness difference and magnitude of shock wave

SLPCp-18

Capping effect of polyvinylpyrrolidone added to glyoxylic acid nickel complex on femtosecond laser nickel

patterning Minori Takahashi¹, Tomoji Ohishi², Mizue Mizoshiri1

¹Nagaoka University of Technology, ²Shibaura Institute of Technology

Finer Ni patterns were written by femtosecond laser pulse-induced thermochemical reduction using polyvinylpyrrolidone (PVP) -added glyoxylic acid Ni complex ink. The line width was 0.13 times smaller than using the ink without PVP.

SLPCn-19

Processing of polymer resin films by short-pulse He-free CO₂ laser Daikichi Miyagawa, Katsunori Negishi,

Ryo Okawa, Kazuyuki Uno

University of Yamanashi

Processing characteristics of polymer resin films using a short-pulse He-free CO2 laser were investigated. Minimum total irradiation fluences required to form a through hole and minimum total irradiation fluences where undesired carbonization occurs were investigated.

SLPCp-20

Nano Dot Structures on the Surface of Si Solar Cells Produced by XeCl and KrF Excimer Laser Pulses

Mitsuhiro Kusaba¹, Kenta Hirai¹ Tomoyo Tanaka¹, Daisuke Tsutsumi¹, Masaki Hashida2,3, Hitoshi Sakagami4 ¹Osaka Sangyo University, ²Tokai University, ³Kyoto Univeristy, ⁴National Institute for Fusion Science

When a silicon solar cell was irradiated with KrF excimer laser with laser fluences lower than the melting threshold, nanodot structures with a height of less than 100 nm were formed.

SLPCp-21

Optimization of computer-generated hologram under adaptive aberration correction in holographic laser

processing machine Koichi Takahashi, Yoshio Hayasaki Center for Optical Research and Education (CORE), Utsunomiya University In order to achieve high-throughput and high-definition femtosecond laser processing, we use parallel processing using

holographic laser processing and in-system optimization of adaptive optics and CGH to reduce wavefront distortion caused by optical elements such as SLM and the processing environment.

SLPCp-22

Towards Entirely Ultrashort Pulsed Laser Based Process Chain to Manufacture Polymer Lab-on-Chip Systems with Electrical, Photonic, and **Microfluidic Functionalities**

Kay Bischoff¹, Stefan Kefer¹, Cemal Esen², Ralf Hellmann¹

¹Applied Laser and Photonics Group, University of Applied Sciences Aschaffenburg, ²Applied Laser Technologies, Ruhr University Bochum This contribution summarizes our recent developments towards an entirely ultrashort laser-based process chain for the fabrication of polymer lab-on-chip systems with electrical, photonic, and microfluidic functionalities, discusses challenges and gives an outlook on promising applications.

SLPCp-23

Investigation of fs-LIPSS on sapphire suitable for anti-reflection property

Yasushi Minemura, Godai Miyaji Tokyo University of Agriculture and Technology We have investigated the reflectivity at sapphire surfaces with fs-LIPSSs by using an RCWA method. The result clearly shows that the surface with sinusoidal nanostructures of ≦250 nm in period can strongly reduce the reflectivity.

SLPCp-24

Flat-Top Beam Shaping with Increased Depth of Focus for Laser Material Processing

Kasumi Kawasaki Yoshio Havasaki Satoshi Hasegawa Utsunomiya University

Beam shaping technology for shaping Gaussian beams into flat-top beams has been applied in materials processing. The issue of the generated flat-top beam is its short depth of focus. In this paper, we demonstrated the flat-top beam shaping with increased depth of focus using two

SLMs. We used algorism for phase retrieval

SLPCp-25

and phase compensation.

Spectroscopic analysis of blue diode laser-induced plumes and evaluation of interference between plumes and laser in pure copper welding

Mao Sudo¹, Shumpei Fujio¹, Kazuki Koda², Hideaki Shirai², Keisuke Takenaka³, Masami Mizutani3, Yuji Sato3,

Masahiro Tsukamoto³ Osaka University, ²DENSO CORPORATION,

³JWRI, Osaka University

Spectroscopic analysis revealed the atoms and molecules constituting plumes and their spatial distribution in pure copper welding using blue diode laser. The melting depth increased with plumes removed, suggesting interference between plumes and laser beam

BISCp 13:30-15:00

BISCp-01

Scanless three-dimensional photostimulation with single cell . resolution using time-multiplexed multi-line temporal focusing

Kenta Inazawa^{1,2,3}, Keisuke Isobe¹ Takayuki Michikawa^{1,4}, Kana Namiki⁴, Atsushi Miyawaki^{1,4}, Katsumi Midorikawa¹ ¹RIKEN RAP, ²Graduated of Biostudies, Kyoto University, 3Hamamatsu K.K., 4RIKEN CBS We developed a scanless three-dimensional patterned illumination system that combines time-multiplexed multi-line temporal focusing with the CGH technique. In our system, even the 1/e2 width of axial resolution is 5.3 µm, which is better than single cell size. We also demonstrated precise scanless excitation in 3D by suppressing hologram distortion and multi-spot interference.

BISCp-02

Multiple beam focusing via digital holograms for scanning lensless vascular endoscope

Hibiki Kunii, Masaki Hisaka Osaka Electro-Communication University

We developed a scanning lensless vascular endoscope that employs a spatial phase modulator to observe narrow blood vessels. Digital hologram technology for local wavefront control formed multiple focusing beams passing through an optical fiber bundle

BISCp-03

Residul water removal for in vivo MRS preprocessing

Zheng-De Hong¹, Yi-Ru Lin¹, Shang-Yueh Tsai² ¹Dept of Electronic and Computer Engineering, National Taiwan University of Science and Technology, ²Graduate Institute of Applied Physics. National Chenochi Univeristy Removal of the residual water signal from in vivo spectra could enhance the reliability of metabolites quantification. Techniques such as SVD (singular value decomposition) and HLSVD (Hankel Lanczos singular value decomposition) were often applied for residual water removal. In this study, we aimed to investigate the influence of number of components. We proposed an automatic evaluation strategy to select the optimal number of components for each spectrum.

BISCp-04

Estimation of the Number of Chemical Species in Bio-Raman Data and Effective Use of the Savitzky-Golay Filter

Shin-ichi Morita1, Jianhai He1, Mohamed M. Abdel Galeil^{1,2} ¹Graduate school of science, Tohoku University, ²Faculty of Science, Tanta University In bio-Raman research, principal component analysis and non-negative matrix factorization (NMF) have been frequently used. In this presentation, effective

determination of the number of the components in NMF is mainly proposed and argued.

BISCp-05

Nanoimprint Meta-device for Chiral Imaging

Jingcheng Zhang, Mu Ku Chen, Din Ping Tsai City University of Hong Kong

In this work, a chiral imaging meta-device with a large area and broadband chirality control is experimentally demonstrated. The centimeter-scale Moiré meta-device is achieved using nanoimprint technology.

^ooster Program

Thursday, 25 April

BISCp 13:30-15:00

BISCp-06

Estimation of skin tissue parameters using heat map in data mining.

Rei Nishimura¹, Hikaru Tamura¹, Atsumu Miyatsu¹, Tomonori Yuasa¹, Kumiko Kikuchi², Yoshihisa Aizu¹ ¹Muroran Institute of Technology, ²Shiseido Co. Ltd., MIRAI Tech. Inst.

We used Monte Carlo simulations to study spectral reflectance in human skin tissue. Estimating skin tissue parameters like absorption and scattering coefficients from data-mined spectra is crucial to understanding skin conditions. Our novel method, employing heat maps, accurately estimates these coefficients and was validated against conventional methods.

BISCp-07

Integrated-resonant meta-devices: enhancing achromatic focused beam generation

Rong Lin¹, Jin Yao¹, Mu Ku Chen^{1,2,3}, Din Ping Tsai^{1,2,3}

¹Department of Electrical Engineering, City University of Hong Kong, ²Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, ³The State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong We proposed compact integrated-resonant meta-devices to generate achromatic focused beams in the visible spectrum, which can improve imaging quality and edge-detection precision.

BISCp-08

Classification of *in Vivo* Optical Coherence Tomography (OCT) Images of Colon Polyps using Multi-Spectral Analysis

Costas Pitris¹, Andrew Thrapp², Guillermo Tearney²

¹KIOS Center of Excellence, University of Cyprus, ²Massachusetts General Hospital & Harvard Medical School

Optical Coherence Tomography can be used to address some limitations of colonoscopy. The interferometric spectral information was used to create multiple, narrow-band, images, at different wavelengths, which were combined to create a "spectral score" for each pixel. This approach improved the visual evaluation of the images as well as the automatic classification of the images (82% accuracy).

BISCp-09

Program

2D Single-shot Spectral-domain Optical Coherence Tomography by Synchronization of pulse light source and camera

Satoe Murazawa, Keito Fukuda, Tatsutoshi Shioda Saitama University

Synchronization of the light source emission and capturing of the image sensor improved the sharpening the 2D-image and vibrational robustness.

BISCp-10

Auto-detection of red blood cells and blood coagulation structures in flow cytometry using digital holographic microscopy Hideki Funamizu

Muroran Institute of Technology Digital holographic microscopy is actively investigated in quantitative phase imaging due to direct access to amplitude and phase

information and therefore is an important role in bio-imaging such as the observation of cell morphology. In this study, we demonstrate the auto-detection of red blood cells and blood coagulation structures in flow cytometry using digital holographic microscopy.

BISCp-11

One-dimensional digital holography for shape measurement Yuma Sato

Utsunomiya University

We propose one-dimensional digital holography for a shape measurement of an object that is moving laterally with a known velocity. The one-dimensional digital holography is based on one-dimensional intensity detection and calculation. The repetition of the digital holography is higher than that of the ordinary two-dimensional digital holography. Therefore, it is effective for industrial applications requiring high throuchout.

BISCp-12

Improvement of spatial resolution enhancement in digital holographic microscopy using speckle

illuminations Hideki Funamizu, Soshi Taneda *Muroran Institute of Technology* Digital holographic microscopy using speckle illuminations is one of the methods for the spatial resolution enhancement and image quality improvement of reconstructed images. In this study, we report an improvement of spatial resolution enhancement in digital holographic

microscopy using speckle illuminations.
BISCp-13
Underwater 3D Imaging by a

Functionally Integrated Waveguide Illuminator-based Digital Holographic Microscope

Maryam Faheem¹, Kenta Hayashi¹, Katsunari Okamoto², Ayaka Tabuchi¹, Eriko Watanabe¹

¹The University of Electro-communications, ²Okamoto Laboratory

This study demonstrated ultra compact Digital Holographic Microscope with a novel optical device: Functionally Integrated Waveguide Illuminator (FIWI). It can be utilized in challenging environments for 3D imaging of microscopic entities in random media.

BISCp-14

Phase measurements for plant cells using transport-of-intensity phase imaging under commercially available confocal microscopy Naru Yoneda^{1,2}, Takumi Tomoi^{3,4},

Joe Sakamoto^{5,6}, Yosuke Tamada^{3,7,8}, Osamu Matoba^{1,2}

¹Graduate School of System Informatics, Department of System Science, Kobe University, ²Center of Optical Scattering Image Science, Kobe University, ³Faculty of Engineering, Utsunomiya University, ⁴Center for Innovation Support, Institute for Social Innovation and Cooperation, Utsunomiya University, ⁵Biophotonics Research Group, Exploratory Research Center on Life and Living Systems, ⁶Division of Biophotonics, National Institute for Physiological Science, ⁷Center for Optical Research and Education (CORE), Utsunomiya University, ⁸Robotics, Engineering and Agriculture-Technology Laboratory (REAL), Utsunomiya University

Quantitative phase imaging (QPI) based on transport of intensity equation (TIE) under commercially available confocal microscopy have been proposed. The proposed method uses bright field module attached in usual confocal microscopy. In this paper phase distributions of plant cells are measured by using TIE-based confocal microscopy. The experimental results indicate the proposed method can measure phase distributions of the moss Physcomitrium patens.

BISCp-15

Development a Real-time Optical Imaging System for In Vivo Fluorescence Detection

Rui Cian Weng, Yen Pei Lu, Chi Hung Hwang Taiwan Instrument Research Institute, National Applied Research Laboratories In recent years, non-invasive molecular

probes have emerged as a key technique in in vivo optical imaging, drawing attention across preclinical imaging, pharmaceuticals, gene expression, and regenerative medicine. These methods enable real-time tracking of disease progress and treatment responses, offering high sensitivity to measure luminescent and fluorescent signals, facilitating image calibration and quantitative comparisons.

BISCp-16

Quantitative evaluation of lipid mechanical properties in metabolic dysfunction-associated steatotic liver disease by use of Brillouin scattering microscopy

Naoya Okubo¹, Eiji Hase², Kazuki Yasumaru¹, Yu Tokizane², Mayuko Ichimura-Shimizu³, Koichi Tsuneyama³, Takeo Minamikawa², Takeshi Yasui²

¹Grad. Sch. Sci. Tech. Innov. Sci. Tokushima Univ., ²Inst. Post-LED Photonics, Tokushima Univ., ³Grad. Sch. Med. Sci. Tokushima Univ. We applied Brillouin scattering microscopy to the quantitative analysis of mechanical properties of lipid droplets in the liver tissue and succeeded in evaluating the differences in Brillouin frequency shift depending on their crystallinity.

BISCp-17

Non-Invasive Quantification of the Photon Fluence Rate in the Prefrontal Cortex for Transcranial Photobiomodulation (tPBM)

Bo-Yong Lin, Yu-Peng Hsieh, Tzu-Chia Kao, Kung-Bin Sung

National Taiwan University The prediction model estimated the fraction of the stimulation source penetrating the prefrontal cortex non-invasively. Using an individually optimal dose by model reduces the error compared to using a constant dose

BISCp-18

for the recipient.

Parallel light sources generated with computer-generated hologram for laser scanning-based broadband imaging

Kota Kumagai¹, Hsin-hui Huang², Koji Hatanaka^{3,1}, Saulius Juodkazis², Yoshio Hayasaki¹

¹Utsunomiya University, ²Swinburne University of Technology, ³Okayama University

Parallel generated femtosecond-laser-driven light sources on a water film have been applied to laser-scanning-based broadband imaging. The number of light sources was controlled by a computer-generated hologram displayed on a liquid crystal on silicon spatial light modulator. We have demonstrated that parallel generated light sources improves the contrast of reconstructed images.

BISCp-19

Image Reconstruction Quality for Speckle Correlation Imaging with the Number of Nonzero-Pixels Constraint Kenta Mizuno, Wataru Watanabe Ritsumeikan University

Reconstuction conditions of an object placed behind a diffuser in speckle correlation imaging were examined by changing an additional support constraint in object domain constraints with nonzero-pixel constraints.

BISCp-20

Quantification of age-dependent acute and cumulative effects of safety-dose doxorubicin hydrochloride on the cardiac dynamics of larval zebrafish

Min Lee¹, Yu-Hsuan Huang¹, Yin-Jhen Jian¹, Huai-Jen Tsal², Po-Sheng Hu¹ ¹College of Photonics, National Yang Ming Chiao Tung University, ²School of Medicine and department of life science, Fu Jen Catholic University

This study investigates the acute and cumulative effects of doxorubicin (DOX) on the age-dependent cardio-dynamic parameters of zebrafish larvae using lightsheet fluorescence microscopy. Experimental results indicate the lethal dosage beyond 15 ppm for the elder group, and better tolerance up to 60% survival rate at 20 ppm for the younger group.

Thursday, 25 April

BISCp 13:30-15:00

BISCp-21

Bio-Raman Spectral Analysis of Living Cells

Shin-ichi Morita¹, Mohamed M. Abdel Galeil^{1,2} Jianhai He¹, Kazumasa Ohashi¹. Yuki Umeda³. Satoshi Yamaguchi³

¹Graduate school of science, Tohoku University, ²Faculty of Science, Tanta University, ³Graduate school of engineering, The University of Tokyo

Recently it became possible to measure Raman spectra of a single live cell using a standard Raman microscope. We have developed mathematically analytical methods compatible to bio-Raman research. We are going to show the recent developments.

BISCp-22

High-Speed DNA Analysis Platform **Based on Lasing Silica Microsphere**

Wonsuk Lee1, Chan Seok Jun ¹Korea Institute of Science and Technology, ²Korea University

We detect a target DNA sequence with a single laser emission burst from silica microsphere based optofluidic ring resonator

BISCp-23

Enhancing the Variation of Fluorescence Signal of qPCR System **Through Two-Dimensional** Visualization Image and Intelligent Image Analysis

Cheng-Ru Li¹, Liang-Chieh Chao¹, Hsin-Yi Tsai¹, Yu-Hsuan Lin¹,

Kuo-Cheng Huang¹, Dar-Bin Shieh² Taiwan Instrument Research Institute, National Applied Research Laboratories, ²Institute of Oral Medicine, School of Dentistry, National Cheng Kung University

This study proposed the two-dimensional (2D) visualization image and intelligent image analysis method to determine the tiny fluorescence variation. The results showed that the sum of intensity above threshold had better resolution than average intensity.

BISCp-24

Preliminary Finding on Resting Metabolite Levels for Brain Region of **Default Mode Network**

Kuan-Hsueh Chou¹, Yi-Ru Lin¹,

Shang-Yueh Tsai²

¹Dept of Electronic and Computer Engineering, National Taiwan University of Science and Technology, ²Graduate Institute of Applied Physics, National Chengchi University

MRSI is used to measure the metabolite concentrations along medial wall that consisting most of brain regions in default mode network (DMN). This study found that NAA and Cre show higher baseline levels in DMN regions covering part of prefrontal cortex and posterior cingulate cortex than in non DMN regions. This preliminary finding suggest that active neuronal activity of DMN may result in higher baseline metabolite levels.

BISCp-25

Pressure injury ulcer stage classification based on convolution neural network image recognition

Ying-Jui Huang, Wei-Cheng Hung, I-Hsu Hsu, Chao-Teng Su, Fu-Li Hsiao Institute of Photonics, National Changhua University of Education

We use different pre-trained convolution neural networks to classify the level of pressure injuries. The performance of these model are compared by Grad-CAM and accuracies.

BISCp-26

Development of Rapid, Highly Selective Spectrophotometric Method for the Detection of Trace Amounts of Nitroxoline in Tablet, and Human Serum

Mohamed Mubark Abdel-Galeil Mohamed^{1,2}, Salah E. El-Zohary^{3,2}, Tarek Alharby³, Hanaa S. El-Desoky², Shin-Ichi Morita ¹Tohoku University, Japan, ²Tanta University, Egypt, ³Taibah University, 42353, Almadinah Almunawwarah, Saudi Arabia This study introduces an efficient spectrophotometric method for quantifying nitroxoline in diverse matrices. Optimal outcomes were achieved at a pH of 7, utilizing a 40% (v/v) ethanol solution. The detection limit for nitroxoline in bulk samples established at 1.5x10⁻⁷ mol L⁻¹

BISCn-27

Real Time Musculoskeletal Ultrasound **Image Annotations**

Hsin-Yuan Chu1, Hao-Yu Hung1 Jyun-Ping Kao¹, Chung-Ping Chen¹, Wen-Shiang Chen² ¹National Taiwan University, ²National Taiwan University Hospital

We have developed an automated annotation system using deep learning neural networks assists in the real-time identification of anatomical for clinical use. improving the interpretation of musculoskeletal ultrasound images

BISCp-28

Classification of Chest X-Ray picture for Hyperbaric oxygen therapy based on convolutional neural network

Ting Wei Chiang¹, Yan Bo Chen¹, Chien-Teng Lin¹, Cheng-Yi Hsieh² Ying-Jui Huang¹, Wei-Chia Su¹, Fu-Li Hsiao¹ ¹Institute of Photonics, National Changhua University of Education, ²Department of Physics, National Changhua University of Education

We used various pre-trained CNNs to classify Chest X-rays for hyperbaric oxygen therapy suitability. The optimal accuracies are 100% for all used model. The feature extraction behaviors are studied by Grad-CAM.

BISCp-29

Dual-Wavelength Fluorescence Imaging based on the Transport of Intensity Equation Yukie Naka¹, Masaaki Kiyosumi¹,

Wataru Watanabe¹, Osamu Matoba^{2,3} ¹Ritsumeikan Univ., ²Grad. Sch. System Informatics, Kobe Univ., 30aSIS, Kobe Univ.

Fluorescence imaging, the transport of intensity equation (TIE), and propagation calculation can reconstruct intensity and phase images at arbitrary depths. Dualwavelength fluorescence imaging and TIE with one light source were used with fluorescent beads with two fluorescence spectra.

BISCp-30

Estimation of Bone Density by Machine Learning with L-RFA data

Tetsuya Matsuyama¹, Katsuhiro Mikami¹, Mitsutaka Nemoto¹, Ryoichi Akiyoshi¹, Reo Terauchi¹, Takuto Hatakeyama² Takeo Nagura², Daisuke Nakashima² ¹Kindai University, ²Keio University In this study, analysis scheme was developed to estimate a bone density using machine learning from vibration data induced by laser irradiation on implants placed in simulated bone.

BISCp-31

Thermal imaging inside an object using an infrared photovoltaic detector for noncontact high-speed core temperature measurement

Ryo Shibano, Masaki Hisaka Osaka Electro-Communication University We examined a thermometer using an infrared point photovoltaic detector for noncontact and rapid measurement of human core temperature. An experimental investigation into the consequences of high-speed thermal imaging within object interiors was conducted.

BISCp-32

Phase-contrast enhancement of biological samples in single-shot X-ray phase-contrast imaging technique

Myung-Joon Kwack¹, Sooveul Lee¹ Yoonseon Song¹, Seung-Hoon Chae¹, Byung Gyu Chae¹, Hyunwoo Lim², Duhee Jeon², Hyosung Cho²

¹Electronics and Telecommunications Research Institute, ²Yonsei University

We proposed a weighted mean filtering technique applied to Fourier-transformed Moiré-less 1st-harmonics images to enhance the image quality of biological samples in single-shot X-rav phase-contrast imaging. The SNR has been improved by more than 25.9%.

IPp 13:30-15:00

IPp-01

Aberration correction based on transport of intensity equation

Shuhei Kasuda^{1,2}, Yoshio Hayasaki^{1,2} Satoshi Haseqawa^{1,} ¹Utsunomiya University, ²Center for Optical Research and Education(CORE)

To perform the aberration correction in the optical system, quantitative phase imaging with the transport of intensity equation was implemented in the simulation. The retrieved phase image was almost the same as the original image of the sample.

IPp-02

Hardware-Awarded Computer Generation Hologram based on Phase Error

Dong-Woo Seo, Youngrok Kim, Chihyun In, Sung-Wook Min

Kyung Hee University

Hardware-Awarded hologram generation techniques compensate physical errors with iterative loop with optical reconstruction feedback. We propose an iterative hologram compensation method capturing the phase information and eliminating physical error.

IPp-03

Axial shaping of focused beam using a computer-generated hologram Nami Kuroo, Yoshio Hayasaki

Center for Optical Research and Education (CORE), Utsunomiya University Long-focused beam shaping which is

indispensable for advanced functional laser processing is arbitrary and adaptively performed with a computer-generated hologram (CGH) displayed on a liquid-crystal on silicon spatial light modulator (LCOS SLM).

IPp-04

Manufacturing a Holographic Cylindrical Vector Beam Converter

Jing-Heng Chen, Chien-Hung Yeh, Kun-Huang Chen

Feng Chia University

This study introduces a new holographic cylindrical vector beam converter using a circular polarization-selective volume hologram grating. The prototype, recorded with a specialized truncated cone prism and a radially polarized beam, demonstrated high efficiency, narrow bandwidth, compactness, and a planar configuration in testing.

IPp-05

Resolution Enhancement of Optical Scanning Holographic Microscopy Chen-Hsiang Huang, Jung-Ping Liu

Feng Chia University Based on the technique of optical scanning holography (OSH), optical scanning holographic Microscopy (OSHM) features three-dimensional (3D) imaging not only in the coherent mode but also in the incoherent mode. Here we discuss the method of resolution enhancement for OSHM by applying two spherical waves with opposite wave curvatures.

Thursday, 25 April

IPp 13:30-15:00

IPp-06

One-shot color-encoded Fringe Projection for 3D Shape Measurements

Wei-Hung Su, Pei-Chi Li National Sun Yat-sen University / Department of Materials and Optoelectronic Science A method using color-encoded fringe projection to describe the profile of the dynamic object is presented. Accuracy of the presented method could be as high as those measured by a three-step phase-shifting

technique.

Uniform imaging environment design for specular objects using elongated rectangular beam splitter

Hanjin Cho, Siwoo Lee, Minseok Chae, Juhyun Lee, Yoonchan Jeong, Byoungho Lee Seoul national university

This paper proposes a novel optical design method to create a uniform imaging environment for objects with specular reflections using a dome, a rectangular bar light, and an elongated rectangular beam splitter.

IPp-08

Observation of ultrasound generated by a focused femtosecond laser pulse on a material using in-line Mach-Zehnder interferometer implemented with diffractive gratings

Kaede Yamauchi, Sotaro Komatsu, Yoshio Hayasaki

Ultrasound is generated when a femtosecond laser pulse is focused on a material surface. The ultrasound contains useful information of laser irradiation condition, laser matter interactions, and fabricated structures. The ultrasound is measured by a Mach-Zehnder interferometer implemented with grating beam splitters, which has a feature of high stability against an external disturbance because of its in-line arrangement.

IPp-09

Pupil Expansion in Projection-type CGH Display with Scanning HOE Screen

Wen-Kai Lin¹, Shao-Kui Zhou^{1,2}, Chun-Chia Chen¹, Bor-Shyh Lin², Wei-Chia Su¹ ¹National Changhua University of Education, ²National Yang Ming Chiao Tung University

A see-through projection-type computergenerated hologram (CGH) display system with extended pupil for image observation is presented. The field of view (FOV) of the CGH display image is 21 degree. And a horizontal exit pupil with 50mm is achieved in our experiments.

IPp-10

Imaging performance of a bionic human eye model for emmetropic vision

Ssu-Chia He¹, Ching-Yao Huang², Han-Yen Tu³, Chau-Jern Cheng¹

¹National Taiwan Normal University, ²Dayeh University, ³Chinese Culture University We propose and develop a bionic human eye model with a liquid lens as crystalline lens for vision accommodation and characterize

the imaging quality of the eye model to achieve the emmetropic eyes vision.

IPp-11

Lensless Computational Imaging Framework with Applications to Digital Holography

Yunhui Gao, Shuowen Li, Liangcai Cao Department of Precision Instruments, Tsinghua

University The basic framework of lensless imaging is introduced and a spatiotemporally

regularized inversion (STRIVER) method is presented. High-fidelity, motion-resolved, reference-free holographic imaging is achieved for dynamic scenes, pushing the temporal resolution toward higher limits.

IPp-13

Enhancing Fresnel Zone Aperture Encoded Lensless Imaging with Autofocusing Method

Fangyu Liu, Jiachen Wu, Liangcai Cao Department of Precision Instruments, Tsinghua University

A method for high-quality reconstruction and autofocusing in Fresnel zone aperture (FZA) encoded lensless imaging is proposed. By examining the image sharpness on the back propagation, the accurate focusing distance and PSF considering diffraction can be calculated. Then we can use a TV regularization-based compressive sensing method to suppress the twin image.

IPp-15

A Proposed Method for Estimating Pufferfish piece Counting and Pufferfish Size Using a Single Convolutional Neural Network Azu Murakami¹, Hiroki Takatsuka¹,

Shiro Suyama¹, Masaki Yasugi^{1,2}, Hirotsugu Yamamoto¹ ¹Utsunomiya University, ²Fukui Prefectural University

We propose a method for estimating pufferfish piece counting and pufferfish size by using a single convolutional neural network. The piece counting has correct count in 56 images out of 100 images. Measurements were taken with respect to the size of the box in relation to the size of the fish. The most common bounding box size obtained from this measurement was between 0.05 and 0.1. This is 135 out of 344 total bounding boxes.

LDCp 13:30-15:00

LDCp-01

Grating-based AR display system with three-layer volume holographic lightquide

Chun-Chia Chen¹, Shao-Kui Zhou^{1,2}, Wen-Kai Lin³, Ching-Cherng Sun³, Bor-Shyh Lin², Wei-Chia Su¹ ¹National Changhua University of Education, ²National Yang Ming Chiao Tung University,

³National Central University An AR display system with large FOV based on three-layer volume holographic lightguide element is presented. Each layer of the volume holographic lightguide is designed to offer one-third FOV of the diffraction image. The horizontal FOV of the proposed system can reach 63.9°. Each in-coupler and out-coupler is generated with wavelength multiplexing to record three volume holographic gratings with different wavelength in the same device for color display.

LDCp-02

Investigation of human skin mechanics by using multimodal SHG, TPEF, and Brillouin scattering microscopy

Naoya Okubo¹, Eiji Hase², Yuki Ogura³, Yu Tokizane², Takeo Minamikawa², Takeshi Yasui²

¹ Grad. Sch. Sci. Tech. Innov. Sci. Tokushima Univ., ²Inst. Post-LED Photonics, Tokushima Univ., ³Shiseido Global Innovation Center

We developed a multimodal optical microscopy system integrating secondharmonic-generation (SHG), two-photon excitation fluorescence (TPEF), and Brillouin scattering microscopy for *ex vivo* mechanical analysis of the human skin.

OMCp 13:30-15:00

OMCp-01

Study of the ultra-high oxide/oxide/ metal/oxide four-layer transparent conducting electrodes deposited by low temperature sputtering

Dai-Mei Lin, Tai-Yuan Chen, Chia-Wun Dai, Guan-Ru Lin, Pin-Hsuan Hsu, Da-Xun Wang, Chia-Ching Wu

Department of Applied Science/National Taitung University

In this study, the transmittance of ITO/GZO/ Ag/ITO four-layer electrode solving the problem of low transmittance in NIR range. The transmittance of ITO/GZO/Ag/ITO four-layer electrode is higher than the ITO/ Ag/ITO sandwich structure in visible light and NIR range. A semitransparent spiro-OMeTAD/CH₃NH₂Pbl₂/SnO₂/ITO perovskite solar cell with ITO/GZO/Ag/ITO four-layer electrode exhibits an photoelectric conversion efficiency of about 14%.

OMCp-02

Light induced motion in an intrinsically chiral metal cluster

Takuya Nakashima, Wataru Ishii Osaka Metropolitan University Metal clusters composed of specific numbers of metal atoms and ligands possess atomically precise structure. The photoexcitation of a metal cluster could induce a possible contraction motion in the

excited state

Realization of Arbitrary Caustic Engineering via 3D-printed Metasurfaces

Xiaoyan Zhou^{1,2,3}, Hongtao Wang^{2,3}, Shuxi Liu¹, Hao Wang³, John You En Chan³, Cheng-Feng Pan^{2,3}, Daomu Zhao¹, Joel K. W. Yang³, Cheng-Wei Qiu² ¹Zhejiang University, ²National university of singapore, ^aSingapore university of technology and design

By introducing the "compensation phase" via 3D-printed metasurfaces, we sculpt caustic fields with arbitrary propagation trajectories in free space. During propagation, the in-plane caustic patterns can either be preserved or morphed from one shape to another.

OMCp-04

Interaction between structured optical fields and two-dimensional materials for high-efficiency optoelectronic conversion

Xinozhan Wei

Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences

In this talk, we discuss our endeavors to improve the optoelectronic conversion efficiency of 2D materials-based detectors. This enhancement is achievable through the integration of nanostructured optical fields, utilizing either Au nanoparticle gratings, an Au nanoslit array, or a nanostructured silicon substrate.

Thursday, 25 April

OMCp 13:30-15:00

OMCp-06

Spatial control of heat generation in metal nanostructures with high-order plasmonic modes

Kenji Setoura¹, Mamoru Tamura^{2,3}, Tomoya Oshikiri^{4,5}, Takuya Iida³ ¹*Kobe City College of Technology, ²Osaka University,* ³*Osaka Metropolitan University,* ⁴*Tohoku University,* ⁵*Hokkaido University* We numerically demonstrated that the location of heat generation by photothermal conversion can be controlled by the excited plasmonic mode when using transition metals as plasmonic materials.

OMCp-07

Chirality Emergence of Organic Molecules induced by Circularly Polarized Lyman-alpha Light Irradiation and magnetic field application

Masahiro Kobayashi¹, Jun-ichi Takahashi², Hiroshi Ota³, Koishi Matsuo⁴, Gen Fujimori⁵, Yoshitaka Taira³, Masahiro Katoh⁴, Kensei Kobayashi^{5,6}, Yoko Kebukawa⁶, Hiroaki Nakamura¹

¹National Institute for Fusion Science, ²Doshisha University, ³Institute for Molecular Science, ⁴Hiroshima University, ⁶Yokohama National University, ⁶Tokyo Institute of Technology

Solid film of racemic amino acid (DL-alanine) was irradiated by circularly polarized Lymanalpha light in UVSOR-III, to investigate a cosmic scenario of the origin of the homochirality of terrestrial biomolecules. Optical activity emergence was clearly observed in the circular dichroism spectrum measured at HiSOR. Effects of magnetic field application is also discussed.

OMCp-08

Structural transitions between achiral and chiral crystal structures toward understanding the exchange of angular momentum between light and matter

Ryusei Oketani, Musashi Okada, Ichiro Hisaki Osaka University

We will report that achiral crystal structures of a phenothiazine derivative, which exhibit planar chirality in solid, undergo a SC-SC structural transition to a chiral structure upon heating. Furthermore, when a single crystal with known chirality is brought into contact at the structural transition temperature, a structural transition accompanied by chirality transcription was observed.

OMCp-09

The structure and stability of molecules in condensed systems: interactions with the surrounding environment and electromagnetic fields

Hirofumi Sato¹, Yuji Takabayashi¹, Kosuke Imamura¹, Daisuke Yokogawa² *'Kyoto University, ²The University of Tokyo* The structure of polyatomic molecules in condensed systems was studied based on quantum chemistry and statistical mechanics.

OMCp-10

Controlling bacterial collective motion by liquid crystal droplets rotating in a polarized light beam

Kaito Matsuura, Keita Saito, Yasuyuki Kimura, Yusuke Maeda

Kyushu University, Department of Physics Swimming micro-organisms such as bacteria are known to exhibit turbulent collective motion with increasing density. In this study, we constructed a forced flow field in which liquid crystal droplets are rotated by a circularly polarized light beam to control bacterial turbulence.

OMCp-11

Broad-Spectral-Bandwidth, High-Absorbance Germanium Infrared Photodetector at the 1550 nm Wavelength by the Subwavelength Phase-Tunable Grating

Ching-Yu Hsu¹, Zingway Pei², Jia-Ming Liu³ ¹National Yang Ming Chiao Tung University, ²National Chung Hsing University, ³University of California, Los Angles

A novel Ge infrared photodetector with a subwavelength phase-tunable grating and resonant-cavity-enhanced structure achieves over 60% absorbance (1428 nm to 1567 nm). At 1550 nm, absorbance reaches 69.86% with a 390-nm thin Ge layer.

OMCp-12

Combination of Photoluminescent Dyes and Artificial Molecular Machines Affords Upgraded Photofunctions Rivolun Tovoda

Tohoku University

A photoluminescent dye and a molecular machine are combined in a single molecule and in a liquid crystal device, resulting in synergistic photofunctions and programmed modulation of circularly polarized light.

OMCp-13

Selective Optical Manipulation of Nanoparticles for Emission Lines Using Stimulated Recoil Force

Takao Horai¹, Takudo Wada², Yoshiki Saito¹, Yuto Makino^{1,3}, Masaaki Ashida¹, Hajime Ishihara¹

¹Osaka University, ²Osaka Prefecture University, ³Daicel Corporation

We propose an optical manipulation method to selectively target a particular emission line by using the recoil force generated when irradiating materials with induced light under their inverted-occupation conditions. We evaluated this force using a four-level system and performed a kinetic analysis to demonstrate emission-line selective manipulation.

OMCp-14

Fast stroboscopic switching of an optical force acting upon a levitated nanoparticle

Martin Duchan¹, Martin Šiler¹, Petr Jákl¹, Oto Brzobohatý¹, Radim Filip², Pavel Zemánek¹ ¹Institute of Scientific Instruments of the CAS, v. v. i., Královopolská 147, 612 00 Brno, Czech Republic, ²Department of Optics, Palacký University, 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic

We demonstrate an experimental procedure based on a repetitive and sub-microsecond switching of the trapping laser intensity which leads to the squeezing of the phase space probability density distribution of the levitated nanoparticle in vacuum.

TILA-LICp 13:30-15:00

TILA-LICp-01

Multi-Joule pulses delivered by a gradually doped tiny integrated solid-state laser operated at room temperature

Vincent Yahia^{1,2}, Arvydas Kausas^{2,1}, Takunori Taira^{2,1} ¹Institute for Molecular Science, ²RIKEN SPring-8 Center

A two-stages room-temperature diodepumped laser amplifier has been developed. Using a modular gain medium with step-like doping concentration distribution, the system could deliver 2.6J subnanosecond pulses at 10Hz repetition rate. A distributed face cooling gain medium is currently developed to allow operation up to 100Hz.

TILA-LICp-02

Characterization of crystal quartz for QPM-NLO device

Hideki Ishizuki^{1,2}, Takunori Taira^{1,2} ¹*RIKEN SPring-8 Center,*²*Inst. Mol. Science* Crystal quartz is expected for material of high-intensity QPM device. Characterization of various quartz were compared in VUV and MIR range. Quartz property and polarityinversion characteristics are discussed.

TILA-LICp-03

Buried depressed-cladding waveguides inscribed in Nd:YAG ceramics by picosecond-laser beam writing

Gabriela Croitoru, Florin Jipa, Nicolaie Pavel National Institute for Laser, Plasma and Radiation Physics

Buried depressed-cladding waveguides were inscribed in 1.1-at.% Nd:YAG ceramic using the direct writing technique with a picosecond-laser beam. Laser emission at 1.06 µm and 1.32 µm was obtained under quasi-continuos-wave pumping with fiber-coupled diode lasers.

TILA-LICp-04

Thermal expansion coefficient of YAG ceramics adopted with various kinds of dopant-ions

of dopant-ions Yoichi Sato^{1,2}, Takunori Taira^{1,2}, Tomohisa Takemasa³ *'RIKEN SPring-8 Center, ²Institute for Molecular Science, ³Konoshima Chemical Co., Ltd.*

Thermal expansion coefficients of YAG ceramics doped with Nd^{3+} , Yb^{3+} , Er^{3+} , Sm^{3+} , and Cr^{4+} ions were evaluated from -150 °C to 700 °C. Measured thermal expansion coefficient of various kinds of YAG ceramics were coincided to Nd:YAG single crystals, and no significant differences depending on dopants were detected.

TILA-LICp-05

Study of laser induced damage evaluation for crystals Akihiro Osanai¹, Arvydas Kausas^{1,2},

Takunori Taira^{1,2} ¹*RIKEN SPring-8 Center,* ²*Institute for Molecular Science*

The local inhomogeneity of crystals used for laser oscillation influences the laser damage resistance and it may mislead us about materials evaluation. We considered evaluation methods for crystals having local inhomogeneity and applied experimental data

A 110- 04

What's Happening in the Exhibition Hall?

OPTICS & PHOTONICS International Exhibition 2024 (OPIE'24)

In 1994, The Laser Society of Japan initiated LASER EXPO, which consists of seven optics-related EXPOs; LENS EXPO (Design & Manufacturing), Positioning EXPO, Light Sources & Optical Devices EXPO, Space & Astronomical Optics EXPO, Sensor & Imaging EXPO, and Optical Communication & Applications EXPO.

This is now the leading Asian event for advancing optical solutions.

Make time in your day to visit the exhibit hall, which features a diverse group of companies, representing every facet of the optics and photonics industries.

Learn about new products, find technical and business solutions and gain the most up-to-date perspective of the laser-related business environment.

Review the extensive list of exhibitors below to see who you'll meet at OPIE'24.

There is no charge to attend the exhibit for conference registrants and exhibit-pass only visitors.

Highlights

24 April 10:30-11:15 at 2F Concourse E26 Emerging applications for CO₂ laser based optical fiber glass processing

Erik Böttcher, CEO Nyfors Teknologi AB / Japan Laser Corporation

25 April 13:30-14:15 at 2F Concourse E26 High Performance Interferometers for qualifying complex optical components and optical systems

Donald A. Pearson II, Vice President Sales & Global Operations Apre Instruments / Canon Marketing Japan Inc.

25 April 14:30-17:00 at 2F Concourse E25

Photonics and Sensing Innovation from Thuringia and Berlin. Opportunities for Cooperation.

Welcome by Moderator

Pascal Gudorf, Representative, State Development Corporation of Thuringia (LEG) Introduction by Wolfgang Tiefensee, Thuringia's Minister for Economic Affairs, Science and Digital Society

Exhibitor List

3D Innovation ABEL ActesKyosan Adachi New Industrial AdlOptica Optical Systems Advanced Communication Media AGC Agilent Technologies Japan AĬM AISAY AITEC SYSTEM AK CORPORATION AkiTech LEO Alnair Labs ALT Altechna ALXIS DATA AMAKUSA OPTICAL AMETEK AMPLITUDE JAPAN Anhui Crystro Crystal Materials ANRITSU Ansys Japan

APL MACHINE INDUSTRIAL Aptus Archer OpTx ARTRAY Asahi Diamond Industrial ASAHI RUBBER Asahi Spectra ASKK asphericon Association for Innovative Optical Technologies AUTEX AVAL DATA AYASE Baikowski Japan Beams Berlin Partner for Business and Technologie BITRAN BOOK Fair BPF laser innovation Broadcom / Silicon Technology Bunkoukeiki Camerium Canare Electric

Japan's Photonics Industry: Overview and Outlook

Prof. Yoshimasa Kawata, President of the Optical Society of Japan, Vice President, Shizuoka University
Keynote 1: Thuringia and Japan: Partnering for Innovation in Optics, Photonics and Electronics
Anke Siegmeier, Managing Director, OptoNet e.V.
Keynote 2: Photonics in Berlin Brandenburg
Prof. Dr. rer. nat. Martin Schell, Executive Director, Fraunhofer Heinrich-Hertz-Institute
Keynote 3: Quantum Innovation for Transport Applications (example)

Hirotaka Irie, Denso Corp.

Pitches on Photonics, Sensing and Quantum Optics Fraunhofer Heinrich-Hertz-Institut Photonics for Communication, Sensing, and Quantum Technologies Dr. Dominic Schulz, Head of Strategy Photonics ADL Optica **Multi-focus and Laser Beam Shaping Optics** Dr. Alexander Laskin, CEO Asphericon Democratization of Laser Technology: A Journey of Unlimited **Opportunities** Sebastian Henkel, Head of Global Sales & Procurement FBGS Technologies GmbH Infinity Scan – Endless Monitoring Possibilities Daniel Matz, Sales Manager EMEA Fraunhofer Institute for Applied Optics and Precision Engineering IOF **Photonics - Enabler for Quantum Technologies** Dr. rer. nat. Ramona Eberhardt, Senior Director / Deputy Director, Head of Department Emerging Technologies Micro-Hybrid Electronic GmbH Infrared Components for NDIR Gas Sensing & Remote **Temperature Measurement** Heiko Richter, Senior Key Account Manager

VPIphotonics

Photonic Simulation Software for Engineering and Research Dr. André Richter, CEO
Tokai Optical Co., Ltd.
Presentation title (tbc)
Muneo Sugiura, Ph.D., Optical Products Division

Canon Marketing Japan CARLBASSON CASTECH CBC Optics CBS Japan CERATECH JAPAN Changchun Boxin Photoelectric Changchun New Industries Optoelectronics Tech Changchun Worldhawk Optoelectronics Chroma Technology Japan CHRONIX Chuo Precision Industrial CIOE Circle & Square COMSOL Consortium of Visible Laser Diode Applications CoreMorrow Craft Center SAWAKI CRYSLASER CRYSTAL OPTICS Cybernet System Daicel

Danyang Danyao Optics DELÍTAŐPTIĆS DHT DON Dongguan Changyi Optoelectronics Dongguan Harmony Optical Technology e.x.press ECOPTIK (CHANGCHUN) EDMUND OPTICS JAPAN **EKSMA** Optics ElFys Enable EPIC Exail EXSEAL. FBGS Technologies FiberLabs FIT FIT Leadintex Fraunhofer HHI FSK Fujian Hitronics Technologies FUJII OPTICAL Fujitok

G-Freude GIAI PHOTONICS GIP Technology GLORY Gooch & Housego Graviton Incorporated Guangdong Hall Laser Technolohy HAGITEC Hakuto Hamamatsu Agency for Innovation, Photon Vallery Center HAMAMATSU PHOTONICS HAMAMATSU QUANTUM HANAMURA OPTICS Hangzhou ZhiDa Electro-Optical Hellma Materials Japan Henan UM Optics HighFinesse Japan Hikari HIKARI GLASS Hitachi High-Tech Science HORIBA HOTTA Optical HUBEI GABRIELLE-OPTECH Hubei New HuaGuang Information Materials Huber Diffraktionstechnik Iida Lighting. IIYAMA PRECISION GLASS Innovation Research INNOVENT Institute for Laser Technology Institute of Laser Engineering, Osaka University INTELLEKTUAL'NYE SISTEMY NN IR System Iridian Spectral Technologies IROYAL TECHNOLOGY ISUZU GLASS Itabashi Industrial Promotion Public Corporation ITOH OPTICAL INDUSTRIAL I-Wave Japan DEVICE Japan Guanghe Optics JAPAN IMPORTERS ASSOCIATION OF LASERS & ELECTRO-OPTICS Japan Intense Light Field Science Society Japan Laser Japan Optical Glass Manufacturers' Association JAPAN OPTICAL MEASURING INSTRUMENTS MANUFACTURERS' ASSOCIATION JAPAN OPTOMECHATRONICS ASSOCIATION Japan Photonics Council Japan Precision Measuring Instruments Manufacturers Association Jiangsu Haona Optical JIANGSU YUDI OPTICAL JiangXi Trace Optical Jinan Bodor CNC Machine ITEC JURARON INDUSTRIES KADOMI OPTICAL INDUSTRY Kanagawa Institute of Industrial Science and Technology Kantum Ushikata Kato Seiko KAWAI OPTICS Ken Automation Keysight Technologies KEYSTONE International KIMMON KOHA KIYOHARA OPTICS KLV Kogakugiken KOJIMA ENGINEERING KOSHIBU PRECISION KUNMING METWHICH OPTICAL **KYOCERA** KYOCERA SOC KYOKUEI-KENMAKAKOU KYORITSU ELECTRIC KYORITSU SEIKI

LAYERTEC LCPT LEADER ELECTRONICS Lidaris Light Conversion LightBridge LinkOptics LINX LITEK Lithuanian Laser Association LogistLab LUCEO LUMIBIRD Luminex Trading LxRay MABUCHI S&T MARUBUN MATSUNAMI GLASS IND. MB SMART MEJIRO GENOSSEN Menlo Systems Merck Performance Materials MESS-TEK MFOPTEX Micro Edge Process Micro-Epsilon Japan Micron Microoptics Group, The Japan Society of Applied Physics MICROTECH LABORATORY MORITA OPTICS MSA Factory MSH systems Nalux Nanjing April Electro-optics Nanjing Sapphire Electro-Optics Nanyang Lida Optic-electronics Nanyang Srate Optical Instrument National Astronomical Observatory of Japan National Institute of Information and Communications Technology Natsume Optical NEOARK Neotron Neutrik NIHON KESSHO KOGAKU NIHON KOSHUHA Nihon Synopsys Niko Optics Nippon Electric Glass NISSIN KIKAI NITTO OPTICAL Nittoh NTKI NTT Advanced Technology Ocean Photonics OCJ / Optical Coatings Japan OE GIKEN OHARA Ohyo Koken Kogyo Oji Holdings Okamoto Machine Tool Works OKAMOTO OPTICS OPI OPT CAREER OPTICA (Formerly OSA) OPTICAL SOLUTIONS Optime Technology (Beijing) OPTO SCIENCE Optoelectronics Industry and Technology Development Association Optogama Opto-Line OPTOMAN Optopia OPTOQUEST OptoSirius OptoTech optikmaschinen Optronics Optronscience Orbray (Formerly: Adamant Namiki Precision Jewel) Orsa OtO Photonics OXIDE OZ Optics Panasonic Factory Solutions Sales & Engineering Japan PEARL OPTICAL INDUSTRY Phenix Optics

Phi Microtech PHOTOLEX Photonic Sensing Consortium for Safety and Security Photonicore Technologies (PCT) Photonics Cluster Berlin Brandenburg Photonics division, The Japan Society of Applied Physics Photonics Media Photonques PHOTOTECHNICA Physix Technology Pi PHOTONICS PI-Japan Plastic Optical PNEUM Polaris PolyPhotonics Berlin Power Laser DX Platform Primetech Engineering Prior Scientific PROFITET PULAX Pulstec Industrial QD Laser QED Technologies International Qingdao NovelBeam Technology QS Lasers Quantum Design Japan Quantum Light Instruments Quark Technology RAY-MOTION Rayture Systems RÉVOX RF Materials Rinks Web Ryokosha S.G.K. SAIS Sakai Manufacturing SANKEISHA Santec Santek International SCANSOL Scintacor SEIKOH GIKEN Seiwa Optical sevensix Shanghai Bright Photonics Shanghai Ephoton Optoelectronics Technology SHANGHAI MAGNITY ELECTRONICS Shanghai Onunion Technology Shanghai Yanding Tech Shenzhen Bosen Optoelectronics Technology Shenzhen Dehong Vision Technology SHENZHEN OANDE TECHNOLOGY SHERN YEONG PRECISE OPTICAL SHIBAURA MACHINE Shibuya Optical Shikoh Tech Shimadzu SHINANO SEIMITSU SiChuan JUKA Optical Technology Sinko SINO-GALVO (JIANGSU) TECHNOLOGY Sjllaser Technology SK Fine SoftWorks Soltec Space Photon Spectral Application Research Laboratory SPIF SPRING RAINBOW OPTICS State Development Coproration of Thuringia Study Group of Optical Wireless Power Transmission Success Optics SUMITA OPTICAL GLASS Sumitomo Electric Industries Sun Instruments Sunny Japan SunPlus Trading

SURUGA SEIKI Suzhou Everbright Photonics Systems Engineering T.E.M. T.S.L. TAC COAT Tachibana Optical Lens TACMI CONSORTIUM TAI YEE OPTICAL Taihei Boeki TAISEI Taisyou Optical TAKAHATA PRECISION TAKENAKA OPTONIC TAKENAKA SYSTEM Takeuchi Manufacturing TANAKA ENGINEERING Tatsuno Optics Technical Technohands TECNISCO Teledyne Photometrics Teledyne SP devices THE AMADA FOUNDATION The Graduate School for the Creation of New Photonics Industries The Institute of Electronics, Information and Communication Engineers The Institute of Image Information and Television Engineers The Institution of Professional Engineers, Japan The Japan Society for Precision Engineering The Japan Society of Applied The Laser Society of Japan The Optical Society of Japan The Optical Thin-Film Science and Engineering group The Robotics Society of Japan The Spectroscopical Society of Japan Thermo Graphitics THK PRECISION Thorlabs Japan TOEI Denka Kogyo TOHOKU ELECTRONIC INDUSTRIAL Tokai Tokai Engineering Service TOKAI OPTICAL TOKAI OPTICAL HOLDINGS TOKYO DENSHI KOGYO Tokyo Instruments TOKYO SEIKI KOSAKUSHO TOPCON TOPTICA Photonics Toshiba Teli TOUMEIGIKEN TOYO CHEMICAL Trioptics Japan TRUMPF Trusee Technologies TSUBOSAKA ELECTRIC TSURUMARU Ultraviolet Technology UNION OPTICAL Uniopt UNITAC UNIVERSE OPTICAL INDUSTRIES USA - Montana USHIO U-TECHNOLOGY Vision Sensing VPIphotonics WARP TECH WAVE OPTO WORKS Xi'an SNP Precision Optics YACHIYO MICROSCIENCE YAMAMOTO KOGAKU Yokogawa Test & Measurement Yucaly Optical Laboratory Yuridenki-Shokai Yutong Optical Technology ZheJiang Best Optoelectronic ZHEJIANG LANTE OPTICS Zolix Instruments

PULSAR TW/PW

PW > 1 shot / mm to 1 Hz From > 0.5 PW to > 1 PW TW > From 5 to 10 Hz From > 60 TW to > 250 TW

Ideal for

- > Laser Wakefield Acceleration
- > Protontherapy
- > High Harmonic Generation, XUV and Attoscience
- > And many more....

- > Up to 5 Hz
- > 6| 532 nm and 12| 532nm
- > Quasi top-hat beam profile
- > Very compact footprint

Ideal for

- > Laser peening
- > Ti:Sapphire pumping for TW and PW Laser Systems
- > LIDT test
- > And many more....

URL: https://www.japanlaser.co.jp/ 東京都新宿区西早稲田2-14-1 東京本社 大阪支店 名古屋支店 名古屋市中区錦3-1-30

E-mail: jlc@japanlaser.co.jp TEL 03-5285-0861 FAX 03-5285-0860 大阪市東淀川区東中島1-20-12 TEL 06-6323-7286 FAX 06-6323-7283 TEL 052-205-9711 FAX 052-205-9713

TID

THORLAES

製品開発に取り入れ、素早く提供することで研究業界への負徴を高めていきたいと考えています 新製品の多くはお客様の声から生まれています。是非、皆様のご意見をお聞かせください。

●製品に関するご要望やご相談は、ソーラボジャパン技術部まで
 ☑ techsupport.jp@thorlabs.com

www.thorlabs.co.jp

E-mail: sales@thorlabs.jp

THOR (A) この ソーラボジャパン株式会社・〒179-0081 東京都練馬区北町3-6-3・TEL: 03-6915-7701

Stay at the Forefront of **Photonics Innovations**

Scan to Subscribe www.photonics.com

WORLDWIDE COVERAGE OF

LASERS, OPTICS, POSITIONING, SENSORS & DETECTORS, IMAGING, TEST & MEASUREMENT, SOLAR, LIGHT SOURCES, MICROSCOPY, MACHINE VISION, SPECTROSCOPY, FIBER OPTICS, MATERIALS & COATINGS

